
Static-to-dynamic transformation for metric indexing structures

Bilegsaikhan Naidan, Magnus Lie Hetland

Department of Computer and Information Science,
Norwegian University of Science and Technology,

Sem Sælands vei 7-9, NO-7491 Trondheim, Norway

Abstract

In this paper, we study the well-known algorithm of Bentley and Saxe in the context of similarity search
in metric spaces. We apply the algorithm to existing static metric index structures, obtaining dynamic ones.
We show that the overhead of the Bentley-Saxe method is quite low, and because it facilitates the dynamic
use of any state-of-the-art static index method, we can achieve results comparable to, or even surpassing,
existing dynamic methods. Another important contribution of our approach is that it is very simple—an
important practical consideration. Rather than dealing with the complexities of dynamic tree structures,
for example, the core index can be built statically, with full knowledge of its data set.

Keywords: similarity search, static and dynamic indexes, Bentley-Saxe algorithm, experiments.

1. Introduction

Many modern applications require efficient sim-
ilarity retrieval, including applications in multi-
media (to find similar images, audio in digital-
repositories), pattern recognition (to identify
finger-prints, face images in image databases), and
string searching (to find words in a dictionary while
permitting spelling errors). In such applications,
the search problem is often stated in terms of
distance-search in a metric space. That is, given
a metric d over a universe U, and a data set D ⊂ U,
find the objects in D that are closest to some query
q ∈ D (either all within a search radius r, or the k
nearest neighbors, kNN).

Rather than performing a linear scan of the full
data set, it is common to preprocess the data set
by building an index structure, exploiting the met-
ric axioms (the triangular inequality in particu-
lar). Most existing such index structures are static.1

That is, the index is built with access to the full
data set, and if an object is to be added or deleted,
a full rebuild of the entire index is required. Such

Email addresses: bileg@idi.ntnu.no (Bilegsaikhan
Naidan), mlh@idi.ntnu.no (Magnus Lie Hetland)

1Based on an analysis of the proceedings of the Interna-
tional Workshop on Similarity Search and Applications.

rebuilding is, of course, time consuming and com-
putationally intensive. To accommodate insertions
and deletions, some special-purpose dynamic index
structures, supporting additions and deletions at
low cost, have been proposed. Maintaining the
integrity and performance of a dynamic structure
over time, with only incremental information, can
be challenging; such structures can be more com-
plicated, as well as less able to utilize global infor-
mation about the data set.

In this paper, we study the Bentley-Saxe [1] algo-
rithm in the context of similarity search in metric
spaces. The Bentley-Saxe method is a tool that al-
lows us to transform a static data structure into a
dynamic one for any decomposable search problem
(as explained in Section 3). This means that we can
still use the state of the art in static indexing, even
if we need the functionality of a dynamic indexing
method, without losing the ability to globally ana-
lyze the data set, and without adding any apprecia-
ble complexity. In fact, the Bentley-Saxe method
can use the indexing methods as black-box mod-
ules, permitting a clean separation of the (static)
indexing and the dynamism.

This paper is organized as follows. Section 2
describes some related work. The Bentley-Saxe
method is explained in Section 3. Section 4 pro-
vides our experimental results. Some concluding

Preprint submitted to Elsevier October 27, 2012

remarks are given in Section 5.

2. Related Work

In this section we briefly overview some relevant
static and dynamic metric indexing structures. For
further details, refer to the tutorial by Hetland [8]
and the book by Zezula et al. [16]. We consider
two well-known static methods (the VP-tree and
the SSS-tree) as well as two dynamic ones (EGNAT
and the DSA-tree).

The vantage point (VP) tree [15] is a static bal-
anced binary tree. The construction algorithm for
the VP-tree first selects a representative object p
(a so-called vantage point) from the dataset D and
computes the median m of the distances between
p and the other objects in the dataset. Then it
divides the dataset into two subsets D1 and D2

such that D1 = {x ∈ D | x 6= p, d(p, x) ≤ m}
and D2 = D \ (D1 ∪ {p}). The algorithm recur-
sively builds left and right subtrees for D1 and D2,
if they are not empty. A range query q with ra-
dius r is performed by recursively traversing the
tree from the root to leaves. For each visited node,
d(q, p) is computed and p is reported if d(q, p) ≤ r.
It is necessary to traverse the left subtree only if
d(q, p) − r ≤ m, and, similarly, the right subtree
only if d(q, p) + r ≥ m.

There exists a dynamic version of the VP-tree [7].
However, it is not at all straightforward to imple-
ment correctly, and in some cases it is still unable
to avoid periodic reconstruction of subtrees or even
of the entire tree.

Brisaboa et al. have proposed a static index
structure called the Sparse Spatial Selection (SSS)
tree [3], in which the first object in a dataset is se-
lected as the first cluster center and then the rest of
the objects become new cluster centers if they are
far enough away from all current centers (i.e., the
minimum distance between the object and current
cluster centers is greater than αM , where α is an
user-defined parameter and M is the maximum dis-
tance between any two objects); otherwise, they are
assigned to the cluster associated with the nearest
center. The process is recursively applied to those
clusters that have not yet fallen below a given size
threshold.

The Geometric Near-neighbor Access Tree
(GNAT) [2] is a multiway static tree and is built
as follows. First, a set of pivots are selected at ran-
dom and then the rest of the objects are assigned

to a region associated with the closest pivot. Ex-
amples of a GNAT are shown in Figure 1a, 1b. For
each region, the minimum and maximum distances
to the other regions’ objects are kept for efficiently
filtering out non-promising regions in the search,
meaning that a region is discarded if the query ball
does not intersects with this distance interval. The
subtrees are recursively built for all regions associ-
ated with the pivots.

The Evolutionary GNAT (EGNAT) [14] is a dy-
namic version of GNAT. The root is initially cre-
ated as a leaf node. The insertion algorithm tra-
verses the index structure by choosing the subtree
associated with the closest pivot until a leaf node
is reached. If the leaf node has a room for the new
object, it is added there. Otherwise, the leaf node
is transformed into an internal node by selecting
pivots and distributing its objects into new child
(leaf) nodes. The leaf nodes also keep information
about distances to their parent objects. During the
search this information is used to establish lower
bounds to the actual distances between the query
and objects.

The spatial approximation (SA) tree [9] is based
on an approach that is, at least superficially, quite
different from the hierarchical space decomposition
of the other trees. First, an arbitrary object is se-
lected as the root of the tree and a set of its neigh-
bors is selected as follows. An object is inserted
in the neighbor list if it is closer to the root than
all current neighbors. Otherwise, the object is as-
signed to a subset associated with its closest neigh-
bor. Then, for each subset the procedure is applied
recursively. Figure 1c shows an example of a SA-
tree. The search algorithm uses a best-first branch-
and-bound approach, similar to that used by most
metric tree structures.

Navarro et al. [11] have shown that the SA-tree
can be built dynamically, and they call the result-
ing structure the dynamic SA (DSA) tree. They
manage to preserve the semantics of the SA-tree by
introducing a time-stamp for every object. These
time-stamps are then used during search, to ensure
that only distance relationships that were known
at the time of insertion are used when filtering out
objects, to avoid false dismissals.

3. The Bentley and Saxe algorithm

We call a search problem decomposable if, for any
pair of data sets D1 and D \ D1, the answer to a
query over D can be computed efficiently from the

2

O7

O9

O15
O10

O5

O2 O1

O17

O3
O14

O4

O6 O12

O18

O11
O13

O8
O16

O13 O8 O16 O11

O5,O7,
O10,O15

O1,O2,
O3,O17

O4,
O14 O6,O9,

O12,O18

O7

O9

O15O10

O5

O2
O1

O17

O3
O14

O4

O6

O12

O18

O11
O13

O8
O16

(a)

O16

O13 O8 O16 O11

O5,O7,
O10,O15

O1,O2,
O3,O17

O4,
O14 O6,O9,

O12,O18

O7

O9

O15O10

O5

O2
O1

O17

O3
O14

O4

O6

O12

O18

O11
O13

O8
O16

(b)

O7

O9

O15O10

O5

O2
O1

O17

O3
O14

O4

O6

O12

O18

O11
O13

O8
O16

(c)

Figure 1: Examples of (a) a GNAT space decomposition with hyperplanes between O8, O11, O13 and O16,
(b) the corresponding GNAT tree, and (c) a SA-tree with the root O6.

answers to queries for each of D1 and D \ D1. The
Bentley-Saxe algorithm (BS) exploits this sort of
decomposition to reduce the size of the structures
that need to be rebuilt, on average (i.e., amortized),
when inserting or deleting objects.

The main data structure of BS is a set of m =
blog2 nc + 1 buckets2 B0, B1, . . . , Bm−1 and each
bucket Bi is either empty or a static data struc-
ture that contains a collection of 2i objects. To
insert a new object into the index, the algorithm
follows the same principle that is used for incre-
menting a binary counter, where the ith bit denotes
the absence or presence of a static index structure in
the bucket Bi. The search is performed by access-
ing non-empty buckets and combining the results.
Pseudo-code for the transformation is given in Al-
gorithm 1. Note that the search starts from Bm−1

and proceeds to B0. This may affect the efficiency
of kNN search by shrinking the covering radius of
the current kNN candidate set as much as possible
early on.

Let us consider an example where we insert a
new object into the existing data structure. The
example is illustrated in Figure 2.

Let the buckets B0, B1, . . . , Bk+2 be non-empty.
Thus, the first empty bucket is Bk+3. We build
an index structure for bucket Bk+3 containing the
new object and all the objects stored in buckets
B0, B1, . . . , Bk+2. After building this structure,
buckets B0, B1, . . . , Bk+2 are nulled. Buckets Bk+4

and upward are unchanged.
Now consider the asymptotic running time and

space requirements of this approach. Let T be a

2For a dynamic index, the number of buckets is, of course,
unknown at the outset. The problem size n is the number
of objects added so far.

Algorithm 1 Static to dynamic transformation

1: function Init():
2: B0 ← null;m = 0

3: function Insert(x):
4: D ← {x}
5: Find minimum k such that Bk = null
6: for i ← 0 to k − 1:
7: D ← D ∪ Unbuild(Bi)
8: Bi ← null

9: Bk ← Build(D)
10: if k = m:
11: Bm+1 ← null;m← m+ 1

12: function Query(q):
13: ans ← ∅
14: for i ← m− 1 downto 0:
15: if Bi 6= null:
16: Search using q in Bi and update ans with results

17: return ans

static metric index structure with size ST (n) that
can be built in time CT (n) and perform a query
in time QT (n). BS gives us a dynamic metric
index structure T ′ based on T that requires the
storage ST ′(n) ∈ O(ST (n)) and bulk construction
time CT ′(n) ∈ O(CT (n)) (assuming that both stor-
age and construction requirements are at least lin-
ear), and, because each object is inserted in log n
buckets, an amortized insertion time for n ele-
ments of IT ′(n) ∈ O(log n · CT (n)). In fact, if
CT (n) ∈ Ω(n1+ε), for some ε > 0, we have IT ′(n) ∈
O(CT (n)), that is, there is no asymptotic over-
head.3 We can, in general, guarantee a query time
of O(log n · QT (n)). Moreover, if QT (n) ∈ Ω(nα)
for some α > 0, which is generally assumed [10],
the query time is QT ′(n) ∈ O(QT (n)).

The original version of BS method was not de-

3This can also be made to hold in the worst case, using
lazy rebuilding techniques that we have not studied in this
paper.

3

k k+1 k+2 k+3 k+4 k+5 k k+1 k+2 k+3 k+4 k+5

Figure 2: Illustrations of an index structure before the insertion of a new object (left) and after the insertion
(right).

signed to handle deletions efficiently. Consider,
for example, the scenario where we have a single
non-empty bucket Bk, containing 2k objects. To
delete an object now, we have to split Bk into
B0, B1, . . . , Bk−1. This entails building k index
structures, which might be prohibitively expensive.
To address this, Overmars et al. [12] weakened the
condition of the BS method so that every bucket Bk
can be either empty or a static data structure which
stores at least 2k−2 and at most 2k objects. With
this new condition, our deletion would affect only
Bk−2, Bk−1 and Bk. The approach of Overmars et
al. is shown in Algorithm 2.

Algorithm 2 Overmars and Leeuwen

1: function Insert(x):
2: Replace line 9 of Insert function of Algorithm 1

with the following
if |D| > 2k−1: Bk ← Build(D)

else: Bk−1 ← Build(D) . |D| > 2k−2

3: function Remove(o):
4: Perform a range search in Bk to find k such that o ∈ Bk

. k from m− 1 downto 0
5: if not found o:
6: return false

7: Delete o from Bk . |Bk| is decremented by 1

8: if |Bk| > 2k−2:
9: return true

10: elif |Bk| = 2k−2 and k ≥ 2:
11: if Bk−1 6= null:
12: D ← Unbuild(Bk) ∪ Unbuild(Bk−1)

13: if |Bk−1| > 2k−2:
14: Bk−1 ← null
15: Bk ← Build(D)
16: else:
17: Bk ← null
18: Bk−1 ← Build(D)

19: elif Bk−1 = null and Bk−2 6= null:
20: D ← Unbuild(Bk) ∪ Unbuild(Bk−2)

. |Bk|+ |Bk−2| > 2k−2

21: Bk ← null;Bk−2 ← null
22: Bk−1 ← Build(D)
23: elif Bk−1 = null and Bk−2 = null:
24: D ← Unbuild(Bk);Bk ← null
25: Bk−2 ← Build(D)

26: return true

In line 7, we mark o as deleted in Bk. The bucket
Bk might not be rebuilt until its total number of ob-

jects becomes 2k−2. That would, of course, affect
the search performance. In order to decrease this
effect, we introduce a parameter tuning option be-
tween lines 8 and 9. There are many possibilities
for the parameter tuning. For instance, the bucket
Bk can be rebuilt each time when 2k−3 objects have
been deleted from that bucket. This is the strategy
that is tested in our experiments.

4. Experiments

In this section we present our experimental eval-
uation of two new dynamic trees based on BS, com-
paring them against two existing dynamic trees.
As the performance measure we used the num-
ber of distance computations required to construct
index structures and to answer similarity queries.
We have also investigated the overhead of the BS
method, by comparing the build and search times
of the static indexes to those of their transformed,
dynamic counterparts. We have provided perfor-
mance comparisons of range and kNN queries, as
well as deletion costs per object and search perfor-
mance after deletions.

4.1. The testbed

We performed experiments using both synthetic
data sets, generated by us, and real-world datasets
obtained from the SISAP metric space library [6].
For all vectors we use the Euclidean distance.

• Uniform 10: Synthetic. 100 000 uniformly gen-
erated 10-dimensional vectors.4

• Clusters 10: Synthetic. 100 000 clustered 10-
dimensional vectors with 10 cluster centers.
The centers were randomly chosen from a uni-
form distribution and objects in the clusters

4We also have 8 192 000 uniformly generated 10-dim-
ensional vectors for the complexity analysis of the BS index.

4

were generated from the multivariate normal
distribution around each of the cluster centers
with a variance of 0.1.

• Uniform 20: Synthetic. 100 000 uniformly gen-
erated 20-dimensional vectors.

• Clusters 20: Synthetic. 100 000 clustered 20-
dimensional vectors with 100 cluster centers.
We followed the same procedure as in Clusters
10 to generate the cluster centers.

• NASA: 40 150 feature vectors with 20 dimen-
sions extracted from NASA images.

• Dictionary: a dictionary of 69 069 English
words. We use the edit distance (or Levenstein
distance), that is, the minimum number of in-
sertions, deletions, and substitutions needed to
transform one string into another.

• Histogram: a collection of 112 682 color his-
tograms (112-dimensional vectors) from an im-
age database.

Table 1 shows the intrinsic dimensionalities
(idims) [4] of the datasets. The distance histograms
of the data sets are shown in Figure 3.

4.2. Experiment settings

We have applied the BS method to VP- and SSS-
trees and call the resulting dynamic structures the
BS-VP-tree and BS-SSS-tree, respectively. We have
compared their performances to two dynamic met-
ric index structures, the DSA-tree and EGNAT. We
set the maximum node fanout of the BS-SSS-tree to
5, 10, 20, 40 and 80. The parameter α was 0.45 for
the 20-dimensional and 0.40 for the remaining of the
datasets. The value of M is estimated before every
(re)construction of a bucket as follows. An arbi-
trary object in the bucket is selected as the bound-
ary object. Then, the distances between the bound-
ary and all objects in the bucket are computed 10
times by maximizing the value of M and renewing
the boundary object from current one. The cost
of this estimation is also included in the construc-
tion and deletion costs. We used the SISAP imple-
mentation [6] of DSA-tree with time-stamping and
bounded arity. The original authors [11, § 5.8] sug-
gested this version of DSA-tree that would give the
best results in terms of construction cost and search
efficiency. The maximum arities of DSA-tree were
set to 2, 4, 8, 16 and 32, as in their experiments.

For EGNAT, we set the parameters by trial and er-
ror. We used internal node sizes of 4, 8, 12, 16 and
20 and maximum leaf node arities of 5, 10, 20, 40
and 80. In total, we performed 18 (5+4+3*3) runs
(with several queries).5

We randomly shuffled the order of all objects in
each dataset 10 times, obtaining 10 versions of the
dataset and the results were averaged over 10 runs
using these versions. For each run, a query set
consists of 1000 queries which were selected from
the respective dataset and the remaining objects in
the dataset used for indexing. We selected search
radii for range queries so that we capture on av-
erage 0.01 %, 0.1 % and 1 % of the vectors. The
search radii were in the range from 1 to 4 for the
dictionary, capturing on average 0.003 %, 0.042 %,
0.361 %, and 1.946 % of the dataset, respectively.
For kNN search, we compared the search efficiency
of four structures by varying the result size thresh-
olds, using the values 1, 5, 10, 20, 40 and 80. We
report only best results in terms of search efficiency
from the results obtained with different parameters
use on every query set.

For deletions, the cost includes both locating the
object to be deleted (usually with a range search
with radius 0) and rebuilding buckets. First, we
constructed the BS-VP-tree and BS-SSS-tree on the
datasets. Then, we deleted every 10 % of the cor-
responding datasets from BS indexes and obtained
the ratio between the number of distance computa-
tions required to answer a query set in the deleted
BS indexes and in newly built BS indexes for the
remaining objects in the datasets after deletions.6

We have implemented our experimental frame-
work in C++, which was compiled in gcc 4.6.2 with
the option -O3. All experiments are performed on
a PC with a 3.3 GHz Intel Core i5-2500 processor
and 8 GiB RAM. We did not use any caching of dis-
tances during the construction of index and query
processing.

4.3. The overhead of the BS index

First, let us consider the construction cost over-
head of BS-based index structures. We con-
structed the VP-tree, SSS-tree (with maximum

5Note that leaf node size should be greater than or equal
to internal node size.

6The experiments of deletions with DSA-tree were not
performed because of a bug in the SISAP metric space li-
brary. We contacted one of the original authors of DSA-tree
and it became clear that the bug can not be fixed before the
journal’s deadline.

5

Uniform 10 Clusters 10 Uniform 20 Clusters 20 NASA Dictionary Histogram

13.36 9.24 27.64 20.44 5.18 8.49 2.74

Table 1: idims of the datasets.

0 0.5 1 1.5 2 2.5

0

2

4

6

8

Distance

F
re
qu
en
cy

(%
)

Uniform 10

0 1 2 3 4 5

0

2

4

6

8

Distance

Clusters 10

0 1 2 3

0

2

4

6

8

10

Distance

Uniform 20

0 1 2 3 4 5

0

2

4

6

8

10

Distance

Clusters 20

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

Distance

Nasa

0 5 10 15 20

0

5

10

15

20

Distance

Dictionary

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

2

4

6

Distance

Histogram

Figure 3: Distance distribution histograms.

node fanout 5), BS-VP-tree and BS-SSS-tree (with
maximum node fanout 5) 10 times on every 10 %
of several datasets and obtained the ratio between
the number of distance computations that required
to build the BS index and static index with the
same settings, with the BS index built incremen-
tally. The mean of ratio was 3.23 (standard devia-
tion 0.61), with minimum and maximum values of
1.69 and 4.27. So in our experiments, the BS index
is at most 4.27 times as costly to build as the corre-
sponding static index. Figure 4 shows the construc-
tion cost overhead of the BS-based index structures
using the box plots that display the minimum, the
25 % quantile, the median, the 75 % quantile and
the maximum value.

The figures show that the average ratio for VP-
tree is much higher than the SSS-tree, and the val-
ues for VP-tree are distributed almost evenly. The
values for SSS-tree are positively skewed in gen-
eral, i.e., it has relatively few high values; it also
performed particularly well on the dictionary.

Now let us consider the ratio for index construc-
tion time and query set execution time with all k
and search radii. We followed the same principle
previously used for the construction cost ratio to
obtain these ratios with 2m − 1 objects for each
dataset. The motivation for this was to force all the
buckets in the BS structure to be non-empty; that
is, we intentionally increased the overhead of BS-
based index structures, intending to elicit the worst-
case search performance. The ratios are shown in
Figure 5. For the construction time ratio, the maxi-
mum value for BS-VP-tree was 3.62 (with construc-
tion time 1.23 s) on the dictionary (Figure 5a) while
the maximum value for BS-SSS-tree was 3.80 (with

U
ni
fo
rm

10

C
lu
st
er
s
10

U
ni
fo
rm

20

C
lu
st
er
s
20

N
A
SA

D
ic
tio
na
ry

H
ist
og
ra
m

2.5

3

3.5

4

R
at
io

VP-tree

U
ni
fo
rm

10

C
lu
st
er
s
10

U
ni
fo
rm

20

C
lu
st
er
s
20

N
A
SA

D
ic
tio
na
ry

H
ist
og
ra
m

1.5

2

2.5

3

3.5

4

R
at
io

SSS-tree

Figure 4: Construction cost ratio of BS index to
static index with the same settings.

6

construction time 11.09 s) on Uniform 20 (Figure 6).
In Figure 5b, 5c, 5e and 5f, we see that there is al-
most no search time difference between static and
BS-based index structures on the 20-dimensional
synthetic vectors due to high idims. Across all of
our experiments, the maximum value of query set
execution time for the static index structures was
19.87 s while for the BS-based index structures the
maximum value was 20.97 s.

4.4. Comparison of construction costs

All index structures were built in an incremen-
tal fashion, i.e., initially all of the index structures
were empty and then all objects in the datasets were
added into the index one by one. The construction
costs are shown in Table 2.

As the idim of the synthetic datasets increases we
see that the datasets become difficult to index. This
increase clearly affects the construction cost of the
SSS-tree. This effect may be due to the fact that
every object tends to become a cluster center of the
tree because all objects are approximately equidis-
tant from each other in high-dimensional spaces. It
should also be noted that the clustering cost of the
SSS-tree is high also in the static case, so this is not
an artifact of our approach.

When considering any overhead in construction,
it is important to note that our method is quite
amenable to bulk loading : If a given data set is avail-
able at the outset, or if a large number of objects
are added, there is no need to build the structure in-
crementally, by adding individual objects. Instead,
which buckets need to be filled can be easily cal-
culated from the total data size, and the objects
can be partitioned among these (e.g., randomly),
and the static structures built. This means that
there would be no need for multiple rebuilds, and
the overhead would be much lower. For example, if
the data size were a power of 2, there would be no
overhead whatsoever. The resulting data structure
would still retain all its dynamic properties. (The
overhead in general will, of course, vary with how
close the data size is to a power of 2, either above
or below.)

4.5. Empirical complexity analysis of BS index

We have now looked at the overhead of the BS
algorithm beyond the corresponding static struc-
tures, and we have compared the construction costs
of the BS-based structures and custom-designed dy-
namic ones. We now wish to tentatively examine

the asymptotic complexity of the method, both for
construction and search. We have some expecta-
tions about how the method ought to behave, but
these are based on certain assumptions (primarily
the running times of the static, underlying struc-
tures), which may not hold in practice.

To map out the functional relationship between
input size and performance we use a doubling ex-
periment [13]. To get a sufficiently large data set,
we generated 8 192 000 uniform 10-dimensional vec-
tors. We then measured performance with prob-
lem sizes at various powers of 2, starting at 8000,
with each experiment performed 10 times on 10 ran-
domly shuffled versions of the data. In each exper-
iment, we built the VP-tree, SSS-tree, BS-VP-tree
and BS-SSS-tree7 and obtained the ratio between
the time required to build the BS indexes and the
static indexes.

As discussed in Section 3, if the build time was
Ω(n1+ε), for some ε > 0, we would expect the ratio
between the build-times for the static and BS-based
dynamic structures to be a constant (no asymptotic
overhead). For the VP-tree, however, the construc-
tion cost is Θ(n log n) [see, e.g., 5], which means we
would expect a log-factor between the static and
incremental dynamic construction cost. While an
asymptotic analysis is harder to do for the SSS-
tree, because the arity varies from node to node, it
is not unreasonable to expect a similar complexity.
In Figure 6, we have plotted CT (n)/n for the SSS-
tree, with a logarithmic horizontal axis. A straight
line would indicate a growth proportional to n log n.
The regression line has been included, and, as can
be seen, CT (n) seems to grow more slowly than this
(i.e., a sublinear trend in the log-plot), which would
mean that we could expect the ratio of the static
and BS-based build costs to be logarithmic here as
well.

To see whether the ratios indeed are logarithmic,
we have plotted them in a similar manner in Fig-
ure 7 (once again with a regression line), where a
straight line would indicate a perfect logarithmic
relationship between data size and the index build
slowdown due to the BS method. It seems like the
trend is, indeed, approximately linear.

We also performed kNN searches on the four
structures by using all of the result size thresh-
olds and obtained (1) the time required to answer
a query set in the BS-based and static indexes and

7The BS indexes were built in an incremental fashion.

7

U
ni
fo
rm

10

Cl
us
te
rs
10

U
ni
fo
rm

20

Cl
us
te
rs
20

N
A
SA

D
ict
io
na
ry

H
ist
og
ra
m

3

3.2

3.4

3.6

R
at
io

VP-tree

(a) Construction time

U
ni
fo
rm

10

Cl
us
te
rs
10

U
ni
fo
rm

20

Cl
us
te
rs
20

N
A
SA

D
ict
io
na
ry

H
ist
og
ra
m

1

1.2

1.4

1.6

1.8

2

R
at
io

VP-tree

(b) Range search

U
ni
fo
rm

10

Cl
us
te
rs
10

U
ni
fo
rm

20

Cl
us
te
rs
20

N
A
SA

D
ict
io
na
ry

H
ist
og
ra
m

1

1.2

1.4

1.6

R
at
io

VP-tree

(c) kNN search

U
ni
fo
rm

10

Cl
us
te
rs
10

U
ni
fo
rm

20

Cl
us
te
rs
20

N
A
SA

D
ict
io
na
ry

H
ist
og
ra
m

1

1.5

2

2.5

3

3.5

4

R
at
io

SSS-tree

(d) Construction time

U
ni
fo
rm

10

Cl
us
te
rs
10

U
ni
fo
rm

20

Cl
us
te
rs
20

N
A
SA

D
ict
io
na
ry

H
ist
og
ra
m

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R
at
io

SSS-tree

(e) Range search

U
ni
fo
rm

10

Cl
us
te
rs
10

U
ni
fo
rm

20

Cl
us
te
rs
20

N
A
SA

D
ict
io
na
ry

H
ist
og
ra
m

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R
at
io

SSS-tree

(f) kNN search

Figure 5: Construction time and query set execution time ratio of BS index to static index with same
settings.

Dataset BS-VP-tree BS-SSS-tree EGNAT DSA-tree

Uniform 10 5762240 59199773 3451333 3126671

Clusters 10 5762240 38317600 5327960 3298234

Uniform 20 5762240 208912258 7582301 8631551

Clusters 20 5762240 96468450 8876612 8857394

NASA 1952946 13619821 1646678 1219949

Dictionary 4676487 90720799 4820213 5531384

Histogram 6246315 45558887 9688228 4124772

Table 2: Construction costs of index structures on various datasets.

8

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

100

150

200

N
o
rm

al
iz
ed

d
is
ta
n
ce

co
u
n
t

SSS-tree

Figure 6: Normalized construction cost (CT (n)/n)
vs data set sizes on the synthetic set with SSS-trees.

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

3

3.5

4

R
at
io

VP-tree

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

2

3

4

5

6

R
at
io

SSS-tree

Figure 7: Construction time ratio of BS index to
static index with same settings on various data set
sizes.

(2) the ratio between the query set execution time
in the BS indexes and in the static indexes. The
results are given in Figure 8. (Note that both axes
are logarithmic.) In this case, the expected ratios
would depend on whether the query time is, indeed,
Ω(nα), for some α > 0. If this were the case, we
would expect straight lines in subfigures (a) and (c),
and we would have a constant performance ratio,
which would show as a horizontal line in subfigures
(b) and (d). As can be clearly seen, this is not ex-
actly the case, although it may not be too far from
the truth. It would seem that the empirical query
performance is somewhere between polylogarithmic
and polynomial, leading to a ratio that grows, al-
beit slowly, with problem size.

4.6. Query performance, with and without deletions

Figure 9 shows the search results over the syn-
thetic datasets and the impact of dimensionality.
The performance of all of the index structures de-
grades when the dimensionality increases, espe-
cially for EGNAT and BS-VP-tree. In Figure 10,
the search results over the real-world datasets are
shown. The BS-VP-tree outperforms EGNAT for
the real-world datasets and is comparable to DSA-
tree for range queries with low selectivity. For the
dictionary, the BS-SSS-tree outperforms the DSA-
tree, achieving up to twice the search efficiency. In
all of the experiments, the BS-SSS-tree outperforms
all the other index structures in our experiments, a
result almost certainly due to the efficiency of the
SSS-tree itself, which comes at the price of a higher
building cost. The contribution of our method in
this case is that such a tradeoff between build cost
and search efficiency can be made in the first place,
by providing a dynamic version of the SSS-tree.

Deletions were performed on several datasets.
We measured the all distance computation ratios
(explained in Section 4.2) for all k and search radii
over several data sets. The results are shown in
Figure 11. Each point in the figures shows the av-
erage of those ratios, while the error bars show the
standard error of the mean of the values. The high-
est ratio of search costs is 1.52, and occurs after
deleting 70 % of the Histogram data set. The dele-
tion cost of the BS-VP-tree is quite low in all of
our experiments. The highest deletion cost for the
BS-SSS-tree was 3129, which resulted from deleting
40 % of the dictionary.

9

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

100

101

Q
u
er
y
se
t
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

VP-tree

Static
BS

(a)

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

1

1.5

2

R
at
io

VP-tree

(b)

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

100

101

Q
u
er
y
se
t
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

SSS-tree

Static
BS

(c)

80
00

16
00
0

32
00
0

64
00
0

12
80
00

25
60
00

51
20
00

10
24
00
0

20
48
00
0

40
96
00
0

81
92
00
0

1

1.5

2
R
a
ti
o

SSS-tree

(d)

Figure 8: Mean of the query set execution time (a, c) and query set execution time ratio of BS index to
static index with same settings (b, d) on various data set sizes. The gray area is filled between the minimum
and maximum values, whereas the line represents the mean of the values.

5. Conclusions

We have studied the Bentley-Saxe algorithm for
static-to-dynamic data structure transformations
and how it can be applied to in similarity search,
yielding a simple method for transforming static in-
dex structures into dynamic ones. We have also
empirically demonstrated that the method has a
reasonably low overhead, both in terms of build-
ing and search cost. In fact, this overhead is low
enough that when adapting a particularly efficient
static data structure such as the SSS-tree, we can
still achieve search times lower than comparable
custom-designed dynamic data structures. In ad-
dition to this increased performance, the dynamic
structures resulting from using the Bentley-Saxe
method can be considerably less complex than other
dynamic indexes, given that it is simply an isolated
add-on to existing (usually simpler) static indexes.

References

[1] J. L. Bentley and J. B. Saxe. Decomposable searching
problems I. Static-to-dynamic transformation. Journal
of Algorithms, 1(4):301 – 358, 1980.

[2] S. Brin. Near neighbor search in large metric spaces. In
Proceedings of 21th International Conference on Very
Large Data Bases, VLDB, pages 574–584, 1995.

[3] N. Brisaboa, O. Pedreira, D. Seco, R. Solar, and
R. Uribe. Clustering-based similarity search in met-
ric spaces with sparse spatial centers. In Proceedings
of SOFSEM’08, number 4910 in LNCS, pages 186–197,
2008.

[4] E. Chávez and G. Navarro. A probabilistic spell for
the curse of dimensionality. In Revised Papers from
ALENEX’01, pages 147–160, 2001.

[5] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Mar-
roqúın. Searching in metric spaces. ACM Computing
Surveys, 33(3):273–321, September 2001.

[6] K. Figueroa, G. Navarro, and E. Chavez. Metric spaces
library, 2010. Downloaded November 15th, 2011 from
http://www.sisap.org/Metric_Space_Library.html.

[7] A. W.-C. Fu, P. M.-S. Chan, Y.-L. Cheung, and Y. S.
Moon. Dynamic vp-tree indexing for n-nearest neighbor
search given pair-wise distances. The VLDB Journal,
9(2):154–173, 2000.

10

0.4 0.53 0.7

20

40

60

·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
o
n
s

Search costs for Uniform 10

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

10

20

30

40

50

·103

kNN (log. scale)

D
is
ta
n
ce

co
m
p
u
ta
ti
o
n
s

Search costs for Uniform 10

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

0.55 0.7 0.92

20

30

40

50

·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Clusters 10

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

10

20

30

40

·103

kNN (log. scale)

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Clusters 10

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

0.92 1.05 1.24
80

85

90

95

100
·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Uniform 20

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

70

80

90

100

·103

kNN (log. scale)

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Uniform 20

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1.23 1.44 1.74

70

80

90

100

·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Clusters 20

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

60

70

80

90

100
·103

kNN (log. scale)

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Clusters 20

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

Figure 9: Performance evaluations on the synthetic datasets.

11

0.12 0.28 0.54
0

2

4

6

8

10

·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
o
n
s

Search costs for NASA

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

5

10

15

·103

kNN (log. scale)
D
is
ta
n
ce

co
m
p
u
ta
ti
o
n
s

Search costs for NASA

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 2 3 4

20

40

60
·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Dictionary

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

20

40

60

·103

kNN (log. scale)

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Search costs for Dictionary

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

0.05 0.08 0.13

5

10

15

20

25

·103

Search radius

D
is
ta
n
ce

co
m
p
u
ta
ti
o
n
s

Search costs for Histogram

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

1 5 10 20 40 80

10

20

30

·103

kNN (log. scale)

D
is
ta
n
ce

co
m
p
u
ta
ti
o
n
s

Search costs for Histogram

BS-VP-tree

BS-SSS-tree

EGNAT

DSA-tree

Figure 10: Performance evaluations on the real-world datasets.

12

10 20 30 40 50 60 70 80 90

0

200

400

600

800

1,000

1,200

Percentage of data set deleted

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Deletion costs per object for Uniform 10

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0.95

1

1.05

1.1

1.15

1.2

Percentage of data set deleted

R
at
io

Range search costs for Uniform 10

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0.9

1

1.1

1.2

1.3

Percentage of data set deleted

R
at
io

kNN search costs for Uniform 10

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0

200

400

600

800

Percentage of data set deleted

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Deletion costs per object for Clusters 10

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0.95

1

1.05

1.1

1.15

1.2

Percentage of data set deleted

R
at
io

Range search costs for Clusters 10

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Percentage of data set deleted

R
at
io

kNN search costs for Clusters 10

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0

200

400

600

Percentage of data set deleted

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Deletion costs per object for NASA

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90
0.8

0.9

1

1.1

1.2

Percentage of data set deleted

R
at
io

Range search costs for NASA

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90
0.8

0.9

1

1.1

1.2

Percentage of data set deleted

R
at
io

kNN search costs for NASA

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

500

1,000

1,500

2,000

2,500

3,000

3,500

Percentage of data set deleted

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Deletion costs per object for Dictionary

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0.8

0.9

1

1.1

1.2

Percentage of data set deleted

R
at
io

Range search costs for Dictionary

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0.8

0.9

1

1.1

1.2

Percentage of data set deleted

R
at
io

kNN search costs for Dictionary

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0

200

400

600

800

1,000

1,200

1,400

Percentage of data set deleted

D
is
ta
n
ce

co
m
p
u
ta
ti
on

s

Deletion costs per object for Histogram

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90

0.9

1

1.1

1.2

1.3

1.4

1.5

Percentage of data set deleted

R
at
io

Range search costs for Histogram

BS-SSS-tree
BS-VP-tree

10 20 30 40 50 60 70 80 90
0.9

1

1.1

1.2

1.3

1.4

1.5

Percentage of data set deleted

R
at
io

kNN search costs for Histogram

BS-SSS-tree
BS-VP-tree

Figure 11: Deletion costs and distance computation ratios of deleted BS index to newly built BS index.

13

[8] M. L. Hetland. The basic principles of metric indexing.
In Swarm Intelligence for Multi-objective Problems in
Data Mining, volume 242 of Studies in Computational
Intelligence. 2009.

[9] G. Navarro. Searching in metric spaces by spatial ap-
proximation. The VLDB Journal, 11(1):28–46, August
2002.

[10] G. Navarro. Analyzing metric space indexes: What for?
In Proceedings of the 2009 Second International Work-
shop on Similarity Search and Applications, SISAP ’09,
2009.

[11] G. Navarro and N. Reyes. Dynamic spatial approx-
imation trees. Journal of Experimental Algorithmics
(JEA), 12:1.5:1–1.5:68, 2008.

[12] M. Overmars and J. Leeuwen. Two general methods for
dynamizing decomposable searching problems. Com-
puting, 26:155–166, 1981.

[13] R. Sedgewick. Algorithms in Java, Third Edition.
Addison-Wesley, 2003.

[14] R. Uribe, G. Navarro, R. J. Barrientos, and M. Maŕın.
An index data structure for searching in metric space
databases. In Proceedings of the 6th International Con-
ference of Computational Science, ICCS, volume 3991,
pages 611–617, 2006.

[15] P. N. Yianilos. Data structures and algorithms for near-
est neighbor search in general metric spaces. In Pro-
ceedings of the fourth annual Symposium on Discrete
algorithms, pages 311–321, 1993.

[16] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Sim-
ilarity Search : The Metric Space Approach. Springer,
2006.

14

