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Abstract. Sequence rule mining is an important problem in the field of data min-
ing. Many algorithms have been devised that are based on counting candidate rules
and excluding those with low support. Recently, the techniques of heuristic search,
and evolutionary algorithms in particular, have been applied to various data mining
problems, including sequence mining. In our previous work we have used specialized
hardware to make mining certain rule formats feasible. In this paper we compare the
performance of this hardware with realistic software alternatives. We show that these
software alternatives give acceptable, although significantly slower, running times for
restricted rule formats. We also demonstrate that the increased expressiveness avail-
able with the hardware rule formats does not necessarily have a great impact on pre-
dictive power, and may be more useful as a way of tailoring rule formats to specific
tasks.

1 Introduction

Sequence rule mining is an important problem in the field of data mining. The basic problem
is that of discovering rules that describe the relationship between parts of the data and that
have certain desirable qualities, such as confidence and support [1], or specialized measures of
interestingness[2]. Many algorithms have been devised that are based on counting candidate
rules and excluding those with low support. It is assumed that rules with low support (that is,
those that occur infrequently) are less interesting.

Recently, the techniques of heuristic search, and evolutionary algorithms in particular,
have been applied to various data mining problems [3], including sequence mining [4, 5].
These techniques make possible very flexible rule formats and quality measures, but they
rely on efficient information retrieval techniques, because one or more queries on the full
database must be performed for each evaluation of the heuristic objective function, and this
function is typically calculated a very large number of times.

In our previous work we have shown that specialized pattern matching hardware can make
it feasible to use evolutionary data mining to mine rules of a format that is a superset of those
of most existing approaches, with many added features [4]. While this method has worked



well, it may be of little use if one does not have access to the hardware. Therefore we wish to
evaluate the feasibility of using a software solution instead.

In this paper we examine the role of the specialized hardware in our method, and compare
its performance, both in terms of rule quality and execution speed, with realistic software
alternatives. We focus on two software solutions: (1) similarity based time series retrieval with
signature indexing [6] and (2) pattern based sequence retrieval with regular expressions [7,8].

2 Method

This section first describes the general principles of evolutionary sequence mining. Then
follows a section about sequence retrieval, outlining the three main retrieval methods used in
this paper.

2.1 Evolutionary Sequence Mining

There are many forms of heuristic search, including tabu search [9], simulated annealing [10],
and simple hill-climbing. While we use evolutionary algorithms, other heuristic search meth-
ods would quite likely give similar results.

Evolutionary sequence mining is simply an evolutionary search for interesting patterns in
sequence data. In practical terms:

– The individual solutions are patterns, or, in our case rules, and

– The fitness is related to the occurrences of the individual solutions in the data, found using
some form of information retrieval.

To further elaborate, the patterns can be thought of as rules of the format: “Ifantecedent
thenconsequent(within T time units). Here, the rule consequent is some given event that
may occur at given times, possibly extrinsic to the series itself, while the antecedent (the
condition) is a pattern in some pattern language. In the following experiments the consequent
is part of the problem definition, while the antecedent is the solution. That is, we want to find
rules for predicting the occurrence of certain events (more specifically, the upward movement
of the time series) in a time series.

2.1.1 Evolution Setup

In our approach, the individuals are rule antecedents, expressed in a query language called
IQL [11] or some subset. This query language is designed specifically to exploit the capa-
bilities of the hardware we use, the PMC (see Section 2.2.3). The rules are represented as
syntax trees, and are subject to the common crossover and mutation operations used in Ge-
netic Programming (GP) [12].1 The internal nodes in the trees represent the operators in the
given language. The leaf nodes are symbols from the alphabet used for discretizing the data
(see Section 3 for information about the discretization).

More specifically, in the regular expressions experiments the syntactical nodes used were
union, character sets, andconcatenation.

1The PCA rule format (see Section 2.2.1) is also amenable to simple fixed-length array genome representa-
tion and Genetic Algorithm operators [13].



(1) R→ SS
(2) S→ TT
(3) T →UU
(4) U →C&C
(5) U →C
(6) C→≥ A
(7) C→≤ A
(8) A→ a, for somea∈ Σ

Figure 1: PCA rule grammar. The grammar is shown in Backus–Naur Form (BNF), with nonterminals repre-
sented by uppercase letters, terminals represented by the symbols & (Boolean conjunction),≤ and≥ (range
constraints), and the lowercasea, which is any character from the data alphabet. Alternatives are represented as
separate productions. Adjacent symbols are concatenated

Due to an interaction effect between union and closure when matching with the PMC,
certain matches may be reported with a small offset. While this is not critical in most cases, it
can be crucial in a predictive setting such as ours. It is possible to circumvent this problem, but
for the sake of implementational convenience, we have opted to forego the use of closure. As
this is done in both forms of pattern queries (the regular expressions and the larger IQL subset)
this omission should not give an unfair advantage to either rule format. Also, preliminary
experiments show no gain in predictive accuracy by adding closure to the available operators.

The PCA vector experiments (see Section 2.2.1) usedconcatenation, conjunction, and
ordinal comparisons(≤ and≥). Also, in the PCA experiments, the syntactic structure was
constrained as shown in Figure 1. TheR, SandT nodes are used for generating a balanced
tree of the height needed for matching a vector of (in our case) length 8. In principle, a
grammar can be created for matching vectors of any given length. Also note that the grammar
in Figure 1 corresponds to a subset of IQL, so the rules may be used with the PMC.

For all our experiments we used fifty generations. For the regular expression and full IQL
experiments (see Section 3 for details) we used a population size of 100, while for the PCA
experiments we used a population size of 1000.

2.1.2 Fitness

Several fitness measures are possible for rule mining. In [5], for example, we developed a
fitness measure for unsupervised mining of interesting rules. In this paper we have chosen
to use the correlation measure used in [4], because it makes objective quality comparisons
based on predictive power easier.

The fitness measure is thecorrelationbetween the occurrences of a rule and thedesired
occurrences of the rule, as given by the event to be predicted. In our case, this event is the
time series moving up in the next time step. Using the elements from theconfusion matrixof
a rule (true and false positives and negatives, with the obvious abbreviations) this correlation
may be expressed as

TP·TN− FP·FN√
(TN+FN)(TN+FP)(TP+FN)(TP+FP)

,

whereTP, FP, TN, andFN are the number of true and false positives and true and false nega-
tives, respectively.



2.2 Sequence Retrieval and Rule Formats

The field of information retrieval is broad, and the number of methods for retrieving se-
quences is vast. In this paper we concentrate on two approaches: (1) similarity based retrieval,
using sample sequences as queries, and (2) pattern based retrieval, where the query is a pat-
tern in some query language, for example, a regular expression, a Boolean expression, or
some combination.

We look at three specific retrieval methods: signature indexing, pattern matching with
software (including pattern indexing), and pattern matching with hardware. These methods
are described in the following three sections.

2.2.1 Signature Indexing

Signature indexing is a method for effectively performing similarity based sequence retrieval.
The basic principles of the method are described in [6].

Simply put, similarity based retrieval is based around the notion ofdistance functions
(or, more precisely,dissimilarity functions). A query takes the form of a sample object (or
possibly a sample sub-object, such as a subsequence). Given such a queryq and a distance
functiond(·, ·), the retrieval system must find all objects in the data baseD that fall within a
certain distancedmax, that is,

R= {r ∈ D | d(q, r)≤ dmax}, (1)

whereR is the set of returned objects.
It is typically difficult to create index structures that fit this form of retrieval directly for a

given object type, such as a time series. However, methods exist for indexing simple objects
such as real vectors of fixed dimensionality (so-called spatial access methods).

To use such indexing methods, we must define a maps, which creates asignaturevector
for an object, and a corresponding distance measureds, such that

∀x,y ds(x̃, ỹ)≤ d(x,y), (2)

where x̃ = s(x) and ỹ = s(y). Then, intuitively, if we uses(q) as our query andds as our
distance function, things seem closer than they really are (unlesss(x) = x andds = d). This
requirement guarantees that usingds will not result in any false dismissals. (It will, however,
most likely result in several incorrectly returned objects that may be filtered out at a later
stage.) For it to be possible for an index to work withds, it must usually obey certain other
restrictions. We will not go into that here.

This form of signature indexing for similarity retrieval has received much attention in
recent years (see [6] for a survey). This makes this form of sequence database a natural
candidate for data mining. In the following, we describe one specific form of signature, and
how it may be used in evolutionary data mining. Similar techniques will be possible with
other signature forms.

Figure 2 demonstrates a signature form introduced independently by Yi et al. [14] and
Keogh et al. [15], the Piecewise Constant Approximation, or PCA (also called the Piecewise
Aggregate Approximation, PAA). The signature is calculated from a time series by dividing
the sequence intok equal-sized non-overlapping segments, and calculating the average value
in each segment. The resultingk dimensional vector is the signature. This signature type can



Figure 2: A time series and its PCA signature

a c

Figure 3: Intuitive interpretation of a bounding hyperrectangle as a rule with antecedenta and (optional) conse-
quentc

be used with anyLp norm, and Keogh has shown that it can be used with more complex
distance functions, such as Dynamic Time Warping [16]. It is robust, and simple to imple-
ment. Assume that an index with PCA vectors is available, that the original time series was
of lengthn and that the signatures have been extracted from all (overlapping) windows of
lengthm. Also assume that we have associated a boolean valuep with each signature, which
indicates whether the given window is immediately followed by an upward movement in the
time series. Given this database, our challenge is finding a rule format that may be used in
forming queries. We could use a single signature (as shown in Figure 2), a distance measure
such asd = L2 (Euclidean distance), and a radiusdmax, which would be equivalent to a hy-
persphere ink dimensional space. However, an even simpler alternative is possible, which is
also easier to visualize: an axis parallel hyperrectangle.

An axis parallel hyperrectangle simply gives an upper and lower limit to the permitted
values in each dimension. All common spatial access methods are able to retrieve objects
found within such hyperrectangles. (This is commonly known as a multidimensional range
search.) As Figure 3 shows, axis parallel hyperrectangles are (unlike hyperspheres) easy to
visualize, which is important when the results are presented to a human expert. The figure
also shows how such rules may be used in unsupervised rule mining (as in [5]), by letting the
first k−1 segments function as antecedent (markeda), and the last segment as consequent
(markedc). We will not be using the rules in this manner here.

In our experiments we use the Hybrid Tree [17] to index the PCA signatures.



2.2.2 Pattern Matching and Indexing

Pattern matching is a well-known problem in the field of information retrieval [18]. Apat-
tern is some form of specification, often in the form of a grammar or a predicate, which
characterizes the requested objects. Well-known examples areregular expressions(the kind
of grammars that characterize regular languages) andBooleanor set expressions, using set
operations such as union, intersection, and negation. Such set operations assume that some
other form of query has been executed to generate result sets that may be combined. These
subqueries may be plain substring searches (for example, for words in text) or other pattern
queries, such as regular expressions.

For simple query types such as Boolean combinations of single word occurrences, effec-
tive and simple index forms exist (such as, for example, inverted files [18]). There are index
methods for more complex patterns such as regular expressions, but much less research has
been done in this area.

One theoretically attractive indexing method is that described in [19]. The basic idea is
to use the finite automaton derived from a regular expression to traverse a suffix tree over the
data. For a certain class of regular expressions, this gives a logarithmic running time, and for
regular expressions in general, it gives a sublinear running time. Whereas [19] theoretically
analyzes the properties of the method in great detail, the method has not (to our knowledge)
yet been implemented.

Another indexing scheme is that of [20], which relies onk-gram indexing. The software
system described in [20] is not, however, publicly available.

In this paper we use two well-known tools for efficiently matching regular expressions:

– The index structure Glimpse [7], which uses agrep for its regular expression matching.
Agrep has long been regarded as the state of the art for regular expression searching, both
exact and approximate.

– A more recent tool, NR-grep [8], which in many cases is known to be faster than agrep.

Note that, unlike the suffix tree method in [19], neither of these actually index the regular
expressions (the index structure of Glimpse is designed for roughly locating words in large
amounts of data consisting of several files).

2.2.3 Pattern Matching Hardware

In this paper, as well as in our previous work, we use the Interagon Pattern Matching Chip
(PMC) [21] to localize rule occurrences in the data. This gives us access to the full Interagon
Query Language (IQL) [11] as rule format.

IQL is a rich query language supporting functionality such as regular expressions, posi-
tional offsets, and generalized Boolean expressions. The PMC is able to efficiently parallelize
IQL queries, and can process data at about 100 MB/s.

The PMC consists of three functional units, as illustrated in Figure 4: A data distribution
tree (top), a set of processing elements, or PEs (middle), and a result gathering tree (bottom).
The PEs monitor the data flowing through the chip. They receive the data from the data distri-
bution tree, which can be configured so that single PEs and groups of PEs receive data either
sequentially or in parallel. Each PE is configured with one byte (character) and a comparison
operator, which it uses to look for bytes in the data stream. Matches are reported to the result



PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

f (L,R) f (L,R)

f (L,R)

f (L,R) f (L,R)

f (L,R)

f (L,R)

Figure 4: A data distribution tree with eight leaf nodes (PEs), and the corresponding result gathering tree with
f (L,R) calculated from the above left (L) and right (R) results.

gathering tree, which combines them and produces the final result, a Boolean value repre-
senting a hit or miss for the entire pattern. If the result is a hit, the hit location is reported
back to the host computer.

3 Experiments

In this paper we have restricted ourselves to using a single data set, the ECG data used in [22]
(taken from the UCR time series data mining archive [23]). This data set is highly regular and
periodic, and should yield good results for any viable data mining method. In addition, it is
one of the largest data sets in the URC archive.

For the pattern rules (regular expressions and IQL), we use the discretization process
described in [22], using the best parameters found there (alphabet size 2 and window size
2). For the PCA experiments, the data were handled differently for the spatial index and the
PMC. As a preprocessing step to the use of Glimpse and NR-grep, the discretized data were
broken into records of fixed length, using a sliding window. Thus, the data size for Glimpse
and NR-grep was increased by a factor of 64 (the size of the sliding window) compared to
that used with the PMC. This was necessary to get exact positions from the software, which
is inherently record oriented. For a regular expression to match, it would have to match the
end of the record. Each record thus represented one position in the sequence.

For the spatial index, a sliding window was used to generate a set of vectors of fixed
dimensionality (eight dimensions were used, for ease of representation in the PMC; see Sec-
tion 2.2). Each vector then had its contents shifted and scaled (by subtracting the minimum
value and dividing by the value span) to have its values fall in the range[0,200]. (The number
200 was chosen to parallel that used in the PMC experiments; see below.)

For the PMC, the values were transformed in a similar manner: Each number was trans-
formed by subtracting the minimum of the lastk = 8 numbers (the ones leading up to, and
including, the number in question), and then dividing by the value span of thesek num-
bers. Finally, these numbers were multiplied by 200 and rounded to get integers in the range
[0,200]. This was done to accommodate the need for byte-oriented data in the PMC.



Table 1: Speed comparison

PCA Regex IQL

Hybrid tree 27.16 s – –
Glimpse – 509.65 s –
NR-grep – 542.44 s –
PMC 0.96 s 0.28 s 2.38 s

The rule formats used in our experiments are described in Section 2.2. We have compared
the three for predictive accuracy. In addition, for the PCA rules and the simple pattern rules,
we have compared the running time when using an index structure to that of using the PMC.

All the experimental results (times and accuracies) are the average over ten separate runs
(and, for the accuracies, using separate test sets).

3.1 Mining Speed

In the following, the time used by the GP system is not considered, as it is not dependent
on the retrieval mechanism used in the fitness computation. It may be interesting, though, to
know that the time used by the GP system ranged from about 22 s to about 243 s.

The software retrieval experiments (Glimpse, NR-grep and the Hybrid Tree) were per-
formed on a 1 GHz Pentium III with 256 Mb of memory, running Gentoo Linux.

As can be seen in Table 1, there are great differences in running times. For regular ex-
pression rules, the time taken by the PMC is less than 0.05% of that taken by the software
(Glimpse and NR-grep). For the PCA data, the differences are less pronounced but still quite
clear, with the PMC taking only 3.5% of the time used by the Hybrid Tree.

Please note that these figures should not be taken to indicate that Glimpse is in general
faster than NR-grep, or indeed as a thorough empirical test of the speed of the given software
solutions. We have modified the software to run multiple queries to avoid the overhead in
starting the programs, but may still not have used the software in an optimal manner. Also,
since our main goal was to demonstrate the feasibility of the software solution, rather than
to do a comprehensive benchmark, we have not tested the behavior across many different
kinds of data and queries. The specific data set was chosen because of its size and its clearly
discernible features, as mentioned in Section 3.

3.2 Rule Quality

For comparing rule quality, we use predictive accuracy, that is, the (maximum likelyhood-
estimate of the) probability that a rule will give a correct prediction at a random position in
the test data. The results are shown in Table 2.

Again, using other data sets would most likely produce different results (see [22] for the
application of IQL to other data sets), but the given data still demonstrate that the different
rule forms are comparable in predictive power. Even though the differences are statistically
significant (p� 0.01 with Fisher’s exact test), they may well be problem dependent, and may
not by themselves be large enough to justify using one method over the others. Other factors,



Table 2: Quality comparison

Rule form Accuracy

PCA 69.0%
Regex 71.5%
IQL 72.2%

such as rule comprehensibility or ease of implementation, may also influence the choice of
rule format.

4 Discussion

In this paper we have compared the use of specialized hardware and existing solutions for
information retrieval in evolutionary sequence mining. In addition to rule formats used in our
previous work, we have also introduced the PCA rule format, which is suited for spatial in-
dexing. We have shown that the software solutions are substantially slower than the PMC, but
the running times are still acceptable, indicating that evolutionary sequence mining may well
be performed with existing software. By using distributed evolution (that is, parallelization)
the running times could be reduced even further. Even so, the superior running time of the
PMC indicates that it could be used to mine huge data sets directly, whereas the software
solutions most likely would have to be used on random data samples.

The other main advantage of the PMC is the expressiveness of its rule language. Even
though this is clearly useful in that it allows the user to specify a domain-specific language,
depending on the type of rules desired, it may not be crucial for predictive power, as indicated
by the results in this paper. It should be noted, though, that the data chosen for these experi-
ments is not particularly complex, and that for more complex data sets, the expressiveness of
full IQL might impact the results.
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