
The Role of Discretization Parameters in
Sequence Rule Evolution

Magnus Lie Hetland1 and P̊al Sætrom2

1 Norwegian University of Science and Technology,
Dept. of Computer and Information Science,

Sem Sælands vei 9, NO–7491 Trondheim, Norway
magnus@hetland.org

2 Interagon AS, Medisinsk-teknisk senter,
NO–7489 Trondheim, Norway

paalsat@interagon.com

Abstract. As raw data become available in ever-increasing amounts,
there is a need for automated methods that extract comprehensible
knowledge from the data. In our previous work we have applied evo-
lutionary algorithms to the problem of mining predictive rules from time
series. In this paper we investigate the effect of discretization on the
predictive power of the evolved rules. We compare the effects of using
simple model selection based on validation performance, majority vote
ensembles, and naive Bayesian combination of classifiers.

1 Introduction

As raw data become available in ever-increasing amounts, there is a need for
automated methods that extract comprehensible knowledge from the data. The
process of knowledge discovery and data mining has been the subject of much re-
search interest in later years, and one recent subfield is that of sequence mining.
In our previous work [1] we have applied evolutionary algorithms to the problem
of mining predictive rules from time series. Our method involves discretizing the
time series, in order to be able to evaluate our rules on them (which, in turn,
allows us to use genetic programming to find such rules). This process of dis-
cretization discards some information about the time series, and the parameters
chosen (such as the width of the discretization window) will determine which
features are available for the mining algorithm.

In this paper we investigate the effect of discretization on the predictive
power of the evolved rules. We evolve rules for different discretization parameter
settings and design predictors using the following methods:

1. We test rules evolved for different settings on a validation set. We then take
the rule with the best performance to be our predictor.

2. We select the best rule for each of five discretization resolutions and combine
them to form a predictor ensemble by simple majority vote.



3. We select the best rule for each of five discretization resolutions and combine
them by means of a naive Bayesian model.

Majority vote ensembles are a simple way of combining several predictors
to achieve increased predictive power. To make a prediction, all the component
predictors make their predictions; a simple majority vote is used to decide which
prediction “wins”.

The naive Bayesian predictor is a simple probabilistic model that assumes
conditional independence among the predictor variables. Even though this as-
sumption may be too strong in many cases, there is much empirical evidence
suggesting that the method is quite robust.

2 Method

In this section we first describe the general approach, as developed in [1], as
well as the extensions introduced here, that is, combining predictors for several
resolutions. Finally, the discretization method is discussed.

2.1 The General Mining Approach

The basic method works by using an evolutionary algorithm (EA) to develop
rules that optimize some score (or fitness) function, which describes what qual-
ities we are looking for. Three components are of central importance: The rule
format, the mechanism for rule evaluation, and the fitness function.

For the purposes of this discussion, we only consider one rule format: The
rule consequent is some given event that may occur at given times, possibly
extrinsic to the series itself, while the antecedent (the condition) is a pattern in
a very expressive pattern language called IQL [2]. This language permits, among
other things, such constructs as string matching with errors, regular expressions,
shifts (latency), and Boolean combinations of expressions. In our EA system,
these expressions are represented as syntax trees, in the standard manner.

In order to calculate the fitness of each rule, we need to know at which
positions in the data the antecedent is true. To ascertain this, we use the an-
tecedent as a query in an information retrieval system, the Pattern Matching
Chip (PMC) [3], for which our pattern language was designed. Such a chip is
able to process about 100 MB/s.

There are many possible fitness functions that measure the precision, degree
of recall, or interestingness of a query or rule. For the relatively straightforward
prediction task undertaken here, simple correlation is quite adequate. We use a
supervised learning scheme, in which we mark the positions where want the rule
to make a prediction, and then, for each rule, calculate the correlation between its
behaviour and the desired responses. This can be calculated from the confusion
matrix of the rule (true and false positives and negatives) [1].

It is worth mentioning that even though we focus mainly on predictive power
here, one of the strengths of the method is the transparency of its rule format.
Rather than a black-box predictor, the user receives a rule in a human-readable
language. This can be an advantage in data mining contexts.



2.2 Selecting and Combining Predictors

We want to investigate the effect of the parameters of the discretization process,
or, more specifically, of the resolution and the alphabet size, on the predictive
power of the developed rules. The specific meaning of resolution and alphabet
size is given in Sect. 2.3; informally, the resolution refers to the width of each
(overlapping) discretized segment of the time series, while the alphabet size is
simply the cardinality of the alphabet used in the resulting strings.

As mentioned in the introduction, we will compare three methods of ex-
ploiting the variability introduced by these parameters: model selection through
cross-validation, majority vote ensembles, and naive Bayesian combination of
predictors.

The rules that are developed by our system have their performance tested on
a validation set (done through a form of k-fold cross-validation). In the simple
case, a single resolution and alphabet size is used, and the rule that has the best
performance on the validation set is selected and tested on a separate test set.
Instead of this simple approach, we use several resolutions and alphabet sizes,
run the simple process for each parameter setting, and choose the rule (and,
implicitly, the parameter setting) that has the highest validation rating. This
way we can discover the resolution and alphabet size that best suits a given
time series, without having to arbitrarily set these beforehand. To demonstrate
the effect of this procedure, we also select the rule (and parameter setting) that
has the lowest validation score, as a baseline.

The next method is the majority vote ensemble. For this, we run the basic
process for each parameter setting, and for each resolution we choose the rule
(and, implicitly, the alphabet size) that has the best validation performance. We
then combine these rules to form a single predictor, through voting. In other
words, when we observe a time series (for example, the test set) we discretize
it at all the resolutions, with the given alphabet sizes, (possibly incrementally)
and run each rule in its own resolution. The prediction (“up” or “down”) that
is prevalent (simple majority) among the rules is taken to be the decision of the
combined predictor. Ensembles are described in more detail in [4]. The basic
idea behind them is that if each of a set of classifiers (or predictors) is correct
with a probability p ≥ 0.5 and the classifiers are generally not wrong at the
same time (that is, they are somewhat independent) then a majority vote will
increase the probability of a correct classification.3 More sophisticated ensemble
methods exist; see [4] for details.

The naive Bayesian predictor is a simple probabilistic model that assumes
conditional independence among the predictor variables. Assume that we have
a family {Xi} of predictor variables, and one dependent (predicted) variable
Y . Assume that P (Y = y) is the a priori probability of a given value y being
observed for Y , and P (Xi = xi | Y = y) is the conditional probability of
observing x for Xi, given that Y = y. Then, the naive Bayesian model states

3 Note that because of this requirement, rules with lower than 50% validation accuracy
were excluded from the ensembles.



that our predicted class should be

ζ(x) = arg max
y

P (Y = y)
∏

i

P (Xi = xi|Y = y) . (1)

The independence assumption may in many cases be quite strong, but the naive
Bayesian model can be surprisingly robust, and, as shown in [5], may even be
optimal in cases where the independence assumption is violated.

2.3 Feature Extraction and Discretization

Many features may potentially be extracted from time series; for the task of
prediction, we need to extract features in a way that lets us access the features
of a sequence prefix. A natural approach is to divide the sequence into (over-
lapping) windows of width w, and to extract features from each of these. This
discretization approach is described in the following.

Our basic discretization process is a simple one, used, for example, in [6]. It
works as follows. A time series x = (xi)n

i=1, where xi ∈ R, is discretized by the
following steps:
1. Use a sliding window of width k to create a sequence w of m overlapping

vectors. More formally: Create a sequence of windows w = (wi)m
i=1, where

wi = (xj)
r(i)
j=l(i), such that l(1) = 1, r(m) = n, r(i)−l(i) = k−1 for 1 ≤ i ≤ m,

and l(i) = l(i − 1) + 1 for 1 < i ≤ m. The window width is also referred to
as the resolution.

2. For some feature function f : Rk → R, create a feature sequence f =
(f(wi))m

i=1.
3. Sort f and divide it into a segments of equal length. We refer to a as the

alphabet size.
4. Use the limit elements in the sorted version of f to classify each element in

f , creating a new sequence s where si is the number of the interval where
fi is found.

After this discretization process, we have a sequence s, where si is an integer
such that 1 ≤ si ≤ a, and each integer occurs the same number of times in s. For
convenience, we map these integers to lowercase letters (so that for a = 3 our
alphabet is a. . . c). This discretization is performed on the training set, and the
resulting limits are used to classify the features of the test set. (This means that
there is no guarantee that each character is represented an equal number of times
in the test set.) Many feature functions f are possible, such as average value
or signal-to-noise ratio. Since we are interested in the upward and downward
movement of the series, we have chosen to use the slope of the line fitted to the
points in each window through linear regression.

3 Experiments

In our experiments we use six data sets, available from the UCR Time Series
Data Mining Archive [7] (the first five) and the Federal Reserve Board [8] (the
last data set):



Random walk. A standard random walk, where each value is equal to the
previous one, plus a random number.

ECG. ECG measurements from several subjects, concatenated.
Earthquake. Earthquake-related seismic data.
Sunspots. Monthly mean sunspot numbers from 1749 until 1990. The series is

periodic, with one period of eleven years, and one of twenty-seven days.
Network. Packet round trip time delay for packets sent from UCR to CMU.
Exchange rates. Daily exchange rate of Pound Sterling to US Dollars.

For each of the data sets, the target prediction was when the series moved
upward, that is, when the next value was greater than the current. It is to be
expected that good predictors can be found for the ECG data (as it is quite
regular and periodic), whereas the random walk data, and, to some extent, the
exchange rate data, function as baselines for comparison. Finding predictors
for random data would clearly indicate that our experiments were flawed, and
finding good predictors for exchange rate data would also be surprising, as this
is considered a quite difficult (if at all possible) task.

For each of the data sets we performed experiments with alphabet sizes 2
(the minimum non-trivial case), 5, 10, and 20, as well as window sizes (resolu-
tions) 2, 4, 8, 16, and 32. This was done with tenfold cross-validation4 and early
stopping; that is, rules were selected based on their performance on a separate
validation set before they were tested. As described in Sect. 2.2, results were
used to select the alphabet size that gave the best single-predictor performance
for each resolution, and these rules were then used in constructing ensembles
and Bayesian classifiers.

The rules in the ensembles were developed individually, that is, only their
individual performance was used in calculating their fitness. The performance of
the ensemble was then calculated by performing a simple majority vote among
the rules for each position. The results are summarized in Fig. 1. The percentages
(predictive accuracy) are averaged over the ten folds. For the ECG, sunspot, net-
work, and earthquake data sets, the difference between the worst single classifier
and the best single classifier is statistically significant (p < 0.01 with Fisher’s
exact test), while the differences between the best single classifier, the ensemble,
and the Bayesian classifier are not statistically significant (p > 0.05 for all except
the difference between the best single classifier and the Bayesian combination
for the Network data, where p = 0.049). For the random and exchange rate data
sets there are no significant differences, as expected.

Figure 2 shows how rule accuracy is related to window and alphabet size. For
the random and exchange rate data, no clear trend is discernible. Although there
are clearly problem specific differences, for the ECG, sunspot, and network data,
there seems to be a rough inverse relationship between window size and accuracy,
regardless of alphabet size. For the earthquake data, a large alphabet makes up

4 Note that full cross-validation was not used, due to the temporal nature of the data.
The validation was constrained so that the elements of the training data occurred
at an earlier time than the elements of the testing set.



0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Ran
do

m
EC

G

Su
ns

po
ts

Netw
or
k

Ea
rth

qu
ak

e

Ex
ch

an
ge

Worst

Best

Ensemble

Bayesian

Fig. 1. Performance comparison

for poor resolution, giving peak performance for the two largest window sizes
and the most fine-grained alphabet.

4 Discussion

In this paper we have examined the role of discretization when evolving time
series predictor rules. We used three main techniques to improve the basic evolu-
tion presented in [1]: Model selection based on validation performance, majority
vote ensembles, and naive Bayesian classifiers. Prior to our empirical study, we
expected the ensembles to outperform the simple selection, and the Bayesian
classifiers to outperform both of the other methods. As it turns out, on our
data, there was no statistically significant difference between the three methods,
even though the difference between the result they produced and that produced
by unfavorable parameter settings (discretization resolution and alphabet size)
was highly significant. This leads to the conclusion that, given its simplicity,
plain model selection may well be the preferred method. Our experiments also
showed that the relationship between discretization resolution, alphabet size,
and prediction accuracy is highly problem dependent, which means that no dis-
cretization parameters can be found that work equally well in all cases.

References

1. Hetland, M.L., Sætrom, P.: Temporal rule discovery using genetic programming
and specialized hardware. In: Proc. of the 4th Int. Conf. on Recent Advances in
Soft Computing. (2002)

2. Interagon AS: The Interagon query language : a reference guide. http://www.

interagon.com/pub/whitepapers/IQL.reference-latest.pdf (2002)



0.499
0.4992
0.4994
0.4996
0.4998

0.5
0.5002
0.5004

2 4 8 16 32

Random Walk

a-b

a-e

a-j

a-o

a-t

0.58
0.6

0.62
0.64
0.66
0.68
0.7

0.72

2 4 8 16 32

ECG

a-b

a-e

a-j

a-o

a-t

0.5
0.52
0.54
0.56
0.58
0.6

0.62

2 4 8 16 32

Sunspots

a-b

a-e

a-j

a-o

a-t

0.54
0.56
0.58
0.6

0.62
0.64
0.66

2 4 8 16 32

Network

a-b

a-e

a-j

a-o

a-t

0.5
0.52
0.54
0.56
0.58
0.6

0.62
0.64

2 4 8 16 32

Earthquake

a-b

a-e

a-j

a-o

a-t

0.485
0.49

0.495
0.5

0.505
0.51

0.515
0.52

0.525
0.53

2 4 8 16 32

Exchange

a-b

a-e

a-j

a-o

a-t

Fig. 2. Accuracy as function of window size and alphabet

3. Interagon AS: Digital processing device. PCT/NO99/00308 (2000)
4. Dietterich, T.G.: Ensemble methods in machine learning. Lecture Notes in Com-

puter Science 1857 (2000) 1–15
5. Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning 29 (1997) 103–130
6. Keogh, E., Lonardi, S., Chiu, W.: Finding surprising patterns in a time series

database in linear time and space. In: Proc. of the 8th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining. (2002) 550–556

7. Keogh, E., Folias, T.: The UCR time series data mining archive. http://www.cs.

ucr.edu/~eamonn/TSDMA (2002)
8. Release, F.R.S.: Foreign exchange rates 1971–2002. http://www.federalreserve.

gov/Releases/H10/Hist (2002)


