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Abstract— Rule mining is the practice of discovering interest-
ing and unexpected rules from large data sets. Depending on
the exact problem formulation, this may be a very complicated
problem. Existing methods typically make strong simplifying
assumptions about the form of the rules, and limit the measure
of rule quality to simple properties, such as confidence. Because
confidence in itself is not a good indicator of how interesting
a rule is to the user, the mined rules are typically sorted
according to some secondary interestingness measure. In this
paper we present a rule mining method that is based on genetic
programming. Because we use specialized pattern matching
hardware to evaluate each rule, our method supports a very
wide range of rule formats, and can use any reasonable fitness
measure. We develop a fitness measure that is well-suited for
our method, and give empirical results of applying the method
to synthetic and real-world data sets.

Index Terms— Data mining, rule discovery, time series, genetic
programming, pattern matching hardware.

I. I NTRODUCTION

T EMPORAL sequence data are ubiquitous in many fields,
and lately there has been an increase in the interest

for methods that can extract useful information from large
sequence databases [1]. One specific problem is that of rule
mining: Extracting interesting and unexpected regularities, or
rules, from the data.

The rule mining problem consists of finding patterns that
satisfy certain criteria in a sequence database. These patterns
(or rules) may have a form such as “if we encounter element
x, then we will encounter elementy within t time units.”
Here, x is the antecedent, and y is the consequent. The
quality of such rules may be measured by how frequently they
occur (support), their predictive power (confidence), and by
measures of how interesting they are, described numerically
by so-calledinterestingness measures.

The general approach taken by several authors (for example,
[2], [3]) is to scan the sequential data and to count every
occurrence of a legal rule, as well as the occurrences of
every legal antecedent and consequent. This counting makes it
possible to calculate the frequencies and confidences of each
rule.

However, this approach limits the format of the rules.
Even moderately complex rule formats will make the task of
counting all occurrences unfeasible. Also, existing methods

Pål Sætrom is employed at Interagon AS, Medisinsk-teknisk senter, Olav
Kyrres gt. 3, NO–7489 Trondheim, Norway (email: paalsat@interagon.com,
fax: +47 45594458).

Magnus Lie Hetland is at the Department of Computer and Information
Science, Norwegian University of Science and Technology, Sem Sælands vei
9, NO–7491 Trondheim, Norway (email: mlh@idi.ntnu.no).

(such as [4]) have focused on finding rules that are frequent
and have high confidence, and only subsequently have sorted
the resulting rules using an interestingness measure, which is
meant to measure the true quality of the rule.

The approach taken in this paper is based on the method
of [5]: with the aid of specialized pattern matching hardware
we find sequential rules using genetic programming. In [5]
the task was one of simple sequence learning and prediction.
In this paper we show that by using general interestingness
measures as fitness functions, our method can be used to mine
unknown rules of relatively high quality.

A. Related Work

Previous attempts at solving the problem of mining predic-
tive rules from time series can loosely be partitioned into two
types. In the first type, supervised methods, the rule target is
known and used as an input to the mining algorithm. Typically,
this can be specific events in (or possibly extrinsic to), the time
series. Thus the goal is to generate rules for predicting these
events based on the data available before the event occurred.
The papers [5], [6], [7], [8] fall in this category. All of these
use some form of evolutionary computation; [5] uses genetic
programming, while the others use genetic algorithms.

In the second type, unsupervised methods, the only input
to the rule mining algorithm is the time series itself. The
goal is to automatically extract informative rules from the
series. In most cases this means that the rules should have
some level of preciseness, be representative of the data, easy
to interpret, and interesting (that is, novel, surprising, useful,
and so on), to a human expert [9]. This is the approach we take
in this paper. Of the existing attempts to tackle this problem,
many rely on scanning the data and counting the occurrence of
every legal antecedent and consequent (for example, [2], [3],
[10]). The rules are then ranked according to some measure
of interestingness. This approach does, however, place some
limitations on the rule format in order to make the task of
counting all occurrences feasible. Others have focused on
specific mining problems, such as detecting unusual move-
ments [11], or finding unusual temporal patterns in market
basket data [12].

Unlike these approaches, we try to tackle the core problem
directly, that is, mining interesting rules. This is done by defin-
ing some formal interestingness measure and using genetic
programming to search the rule space for the most interesting
rules. Thus, unlike other methods, the interestingness measure
is used directly in the mining process and not as a post-
processing ranking function. This allows for a much more
flexible rule format than the existing method.



B. Structure of This Paper

The rest of this paper is structured as follows: Section II
describes the preprocessing scheme used to discretize the time
series data used in the experiments, Section III describes how
genetic programming is used to evolve temporal rules, Sec-
tion IV describes in detail how rules are evaluated, Section V
describes our experiments and empirical results, and finally
Section VI summarizes and concludes the paper.

II. PREPROCESSING

The rule mining strategy presented in this paper works on
discrete sequences of symbols. To transform the time series
data of our empirical application to such a symbolic sequence,
we use a simple method used, among other places, in [1]. It
extracts all windows of widthw, and for each such window
a real-valued feature is calculated. This feature may be, for
example, the average value or signal to noise ratio. In our
experiments we have used the slope of a line fitted to the data
points of the window with linear regression.

After such a feature sequence has been constructed, a copy
is made, which is sorted and divided intoa (approximately)
equal-sized intervals. Each interval is assigned an integer from
1 to a, and the limits of the intervals are used to classify
the values in the original feature-sequence. By following this
procedure, we are guaranteed that the symbols (that is, the
integers, which easily map to characters in some alphabet) all
have approximately the same frequency.

Our experiments require us to use both training sets, vali-
dation sets (for early stopping, or model selection), and test
sets. Since the discretization process uses information about
“the future” when classifying a single point, it cannot be used
directly on the validation and testing sets. Instead, the normal
procedure was used on the training set, and the limits found
there were used when classifying the features of the validation
and testing sets.

Note that by allowing the windows to overlap when classi-
fying the positions we avoid unneeded data reduction, but we
also introduce spurious correlations between adjacent symbols.
For most time series, two windows that overlap inw − 1
positions will be quite likely to have similar feature values,
which means they are more likely to be assigned the same
symbol. How we deal with this problem is described in
Section IV-A.

This discretization method is by no means unique. In [13]
a method is described, which uses the slope and signal to
noise ratio for segments of the series. Other usable methods
of discretization include those used to simplify time series for
indexing purposes. See [14] for a survey.

III. E VOLVING RULES

The evolutionary computation strategy used in this paper
is genetic programming, as described in [15]. The algorithm
uses subtree swapping crossover, tree generating mutation
and reproduction as genetic operators. Individuals are chosen
for participation in new generations using tournament selec-
tion. Each individual in the population is a program tree,
representing an expression in some formal language. In our

experiments, we use several such languages, each representing
a format for the rules we wish to discover. Expressions in the
chosen rule languages may be evaluated by the specialized
pattern matching hardware described in Section IV-B, and rule
fitness is calculated by searching the time series data for rule
occurrences.

A. Rule Languages

The basic rule format that will be used throughout this paper
is the simple and well known: “Ifantecedentthenconsequent
within T time units”. In its simplest form, as used in [4],
both the antecedent and consequent are single symbols in the
discretized alphabet,A, while T is a constant. This results in
a rule language of the form:x

T⇒ y for x, y ∈ A.
Several extensions to this simple language are possible and

have been investigated by others:

1) Sequential patterns[3]: If x1 and x2 and . . . and xn

occur in a window of widthw, theny occurs withinT
time units. Herexi, i ∈ {1, n} andy are symbols inA.

2) Regular expressions/episode rules[2]: If the sequence
x1, x2, . . . , xn can be found within in a window of
width w, then y occurs within T time units. Here,
xi, i ∈ 1 . . . n can either be a symbol inA, or a set
of symbolsX ⊆ A for which anyx ∈ X can be a legal
match;y is a symbol inA. These rules are a simple form
of regular expressions; for example, the antecedent in the
episode rule a, {c, d} t⇒ y can be written as a.∗(c|d),
with the added requirement that the maximum length of
the string matched isw.

Note that all of these rule languages share the same basic
format. What differs is how the antecedent is defined, that is,
the language used to generate the antecedent. In general, all
rules of this type can be described by the three parameters:
the antecedent language,La, the consequent language,Lc, and
the maximum temporal distance,T .

Most previously investigated rule languages make a distinc-
tion betweenLa and Lc: La varies in complexity, whileLc

usually is a single character fromA.1 In the following no such
limitation will be made: unless otherwise notedLa = Lc.

B. Rule Representation

The mining algorithm works by using genetic programming
to search the space of possible rules defined byLa, Lc andT .
More specifically, each individual in the population is a syntax
tree in the languageLa

T⇒ Lc. This is implemented by using
three separate branches; One branch for each ofLa, Lc, and
T .

In the antecedent and consequent branches, the internal
nodes in the parse tree are the syntactical nodes necessary for
representing expressions in the corresponding languages. If for
example, the considered language is regular expressions, the
syntactical nodes needed areunion, concatenationandKleene

1One notable exception is [16], which defines a rule language where both
La andLc are sequences of characters separated by wildcards, that is, episode
rules without parallel episodes.



closure. The leaf nodes in these branches are the symbols from
the antecedent and consequent alphabets (Σa andΣc).

The maximum distance branch defines the maximum dis-
tance t of the rule. This branch is constructed by using
arithmetic functions (typically+ and −) as internal nodes,
and random integer constants as leaf nodes. The final distance
t is found by computing the result of the arithmetic expression
rT , and using the residue ofrT moduloT + 1.

C. Confidence, Support, and Interestingness

Given a ruleR = Ra
t⇒ Rc in the rule languageLa

T⇒
Lc (such that t ≤ T ) and a discretized sequenceS =
(a1, a2, . . . , an), the frequencyF (Ra) of the antecedent is the
number of occurrences ofRa in S. This can be formalized as

F (Ra) = |{i | H(Ra, S, i)}|, (1)

whereH(Ra, S, i) is a hit predicate, which is true ifRa occurs
at positioni in S and false otherwise. The relative frequency,
f(Ra), is simply F (Ra)/n, wheren is the length ofS.

The supportof a rule is defined as:

F (Ra, Rc, t) = |{i | H(Ra, S, i)∧
H(Rc, S, j) ∧ i+1 ≤ j ≤ i+t}| (2)

This is the number of matches ofRa that are followed by at
least one match ofRc within t time units.

The confidenceof a rule is defined as:

c(R) =
F (Ra, Rc, t)

F (Ra)
(3)

In most existing methods, candidate rules with high con-
fidence and support are selected. This approach usually gen-
erates a lot of rules, many of which may not be particularly
interesting. As an aid in investigating these rules,interesting-
ness measureshave been developed (see [17] for a survey).
These measures may, for instance, be used to sort the rules in
descending order of interest.

One measure of interestingness that has proved to be robust
for identifying surprising rules is theJ-measure ([18]). This
is defined as:

J(Rt
c, Ra) = p(Ra) ·

(
p(Rt

c|Ra) log2

p(Rt
c|Ra)

p(Rt
c)

+

(1− p(Rt
c|Ra)) log2

1− p(Rt
c|Ra)

1− p(Rt
c)

)
(4)

Here, p(Ra) is the probability of H(Ra, S, i) being true
at a random locationi in S. p(Rt

c) is the probability of
H(Rc, S, i) being true for at least one indexi in a randomly
chosen window of widtht. Finally,p(Rt

c|Ra) is the probability
of H(Rc, S, i) being true at for at least one indexi in a
randomly chosen window of widtht, given thatH(Ra, S, j)
is true and thatj is the position immediately before the
chosen window. TheJ-measure combines a bias toward more
frequently occurring rules (the first term,p(Ra)), with the
degree of surprise in going from a prior probabilityp(Rt

c) to a
posterior probabilityp(Rt

c|Ra) (the second term, also known
as the cross-entropy).

An alternative to theJ-measure is the Piatetsky-Shapiro
rule-interest measure,RI, described in [19]. This measure
quantifies the degree of correlation between the antecedent
and consequent. Rules with high correlation are then seen as
more interesting. In the context of sequence rules, the rule
interest function can be defined as2

RI(Rt
c, Ra) = p(Rt

c|Ra)− p(Ra) · p(Rt
c), (5)

with the same definitions for the probabilities as for the
J-measure. As can be seen from (5), ifRt

c and Ra are
statistically independent thenRI = 0. If H(Rc, S, i) is more
(less) frequently true in a window of lengtht whenH(Ra, S, i)
is true andi is the position immediately to the left of the
window, thenRI > 0 (RI < 0).

IV. RULE EVALUATION

Consider the problem of mining interesting rules from a
sequenceS, given a rule languageL, defined by(La, Lc, T ),
and an interestingness functionf . In order to use genetic
programming to perform this rule mining, we must be able
to compute the value off for every possible rule inL. In
the case thatf is one of eitherJ or RI from Section III-
C, this amounts to estimating the probabilitiesp(Ra), p(Rt

c)
and p(Rt

c|Ra). In the interest of simplicity, we will use the
maximum likelihood estimates for these probabilities. That is,
for a given ruleR = Ra

t⇒ Rc, the estimators are:

p̂(Ra) = f(Ra) (6)

p̂(Rt
c) = f(Rt

c) (7)

p̂(Rt
c|Ra) = c(R) (8)

This amounts to counting the following:

• The number of occurrences ofRa in S (from the defini-
tion of f(Ra).)

• The number of windows of lengtht whereH(Rc, S, i)
is false at every position (asp(Rt

c) = 1− p(¬Rt
c), where

p(¬Rt
c) is the probability thatH(Rc, S, i) is false for all

positions in a random window of lengtht in S.)
• The number of hits fromRa whereH(Rc, S, i) is true at

least once within timet.

A. Handling Correlations Caused by the Discretization
Method

The discretization process described in Section II introduces
correlations between consecutive symbols in the discretized
sequence. This results in that rules with low distancest will
have high confidence. Since these rules are artifacts of the
discretization process, we do not consider them interesting.

To account for these induced correlations, the number of
occurrences of the ruleR = Ra

t⇒ Rc in a sequenceS,
discretized with a window length ofw, is defined as ([4]):

F (Ra, Rc, t) = |{i | H(Ra, S, i)∧
H(Rc, S, j) ∧ i+w ≤ j ≤ i+w+t−1}| (9)

2Note that this is an adaptation of the definition in [19], where the function
is defined for simple classification rules whereRa andRc are single symbols.



Thus, only occurrences ofRa that are followed by a hit from
Rc after w − 1 units of time are counted.3

B. Counting Hits

One important feature of our method is the relative lack
of restrictions placed on the allowed rule languages. To allow
for such flexibility, we cannot perform any general occurrence
counting—the probabilities of each rule must be estimated
individually, in the course of calculating their fitness. Each
such estimation requires a complete pass through the data.

To speed up these calculations to the level where they
are usable as components in a fitness function, we use a
specialized search chip ([20], [21]) for hit counting. This
pattern matching chip (PMC), is able to search 100 MB/s and
can handle from 1 to 64 parallel queries, depending on query
complexity.4 The queries are specified in a special-purpose
query language ([22]). This language supports such language
features as regular expressions, latency (distance), Boolean
combinations, and alpha-numerical comparisons.

As described in Section IV, the process of evaluating a rule
consists of counting the occurrences of three different patterns.
The PMC can be used for this purpose in the following way:

The number of occurrences ofRa in S: This amounts to
counting all hits ofRa in S.

The number of windows of lengtht where H(Rc, S, i) is
false at every position: This can be found by looping through
the hitsHc = {h1, . . . , hn} = {i | H(Rc, S, i)} of Rc in S
and incrementing a counter byhi− hi−1− t if hi− hi−1 > t
(h0 = 0).

The number of hits fromRa whereH(Rc, S, i) is true at
least once within timet: This proved difficult to calculate as
this expression cannot be directly evaluated by the PMC. The
PMC is, however, capable of finding all occurrences where
H(Rc, S, i) is true and is preceded by a hit fromRa at a max-
imum distance oft. This process can be summarized by the
pattern beforeoperator, with the syntaxRa PBEFORE(t) Rc.

As long as the length of the substring matched byRa and
Rc is 1,F (Ra, Rc, t) can be evaluated by using thePBEFORE
operator in the following way: Construct fromS the reverse
sequenceSr. F (Ra, Rc, t) is given by counting the number
of hits from the expressionRr

c PBEFORE(t) Rr
a in Sr. If,

however, this is not the case (that is, eitherRa or Rc does not
match a single symbol), this procedure cannot be used. There
are several reasons why it fails, but the most important reason
is that the distances are distorted.

Consider, for instance, the rule whereRa = ab, Rc = c
and t = 1, and the sequenceS = (a, b, c). In order for Ra

to match the same sub-sequences inSr as in S, it must be
reversed. It should be evident that in this case the reverse of
Ra is Rr

a = ba. Searching forRr
a in the reverse sequence,

Sr = {c, b, a}, will result in a hit at position3, while Rc will
report a hit at position1. So while the distance between hits

3Note that this differs from the definition in [4], where the lower range was
defined asi + w + 1. However, in the limiting case, wherew = 1 (that is,
a single time point), this formula should be equal to the original frequency
definition in (2).

4The prototype used in these experiments searches 33 MB/s and handles 1
to 4 parallel queries.

from the antecedent and consequent is1 in S, it has increased
to 2 in Sr. Although in this case it is trivial to account for the
distance distortion, this is not so in the general case (consider,
for instance,Ra = (a|bc)).

These problems can be solved by using another method
for evaluatingF (Ra, Rc, t): Store the hit locations fromRa

andRc in two arrays sorted by the hit position (this is trivial
when using the PMC, as hits are reported sequentially in an
array). Iterate through the antecedent array and increment a
counter whenever a hit in this array has a hit in the consequent
array that is within the desired distance. This can be done in
O(na + nc) time, wherena and nc is the number of hits
from the antecedent and consequent, respectively (or, in other
words, inO(n) time, wheren is the number of symbols inS,
that is, the worst case whenRa matches every position inS.)

Note that both methods can be used for evaluating the
modified frequency function from Section IV-A. The only
added requirement when evaluating this function is that there
must be leastw − 1 symbols between hits fromRa and Rc.
ThePBEFOREmethod solves this by addingw−1 wild-cards
(that is, symbols matching any symbol) at the start ofRr

a or
at the end ofRr

c . For the hit processing method, this amounts
to only considering hits from the consequent that have at least
a distance ofw − 1 symbols from a hit from the antecedent.

V. EXPERIMENTAL RESULTS

In our experiments we used the following five rule lan-
guages:
L1 Single symbols.
L2 Single symbols and concatenations of single symbols.
L3 Sequential patterns.
L4 Regular expressions with the limitation that skips and

repetitions cannot be recursive (for example, expressions
of the type: a(b∗c)∗d, a(b?c)?d and a(b?c)∗d are not
allowed.)

L5 L4 with the addition of alpha-numerical comparisons and
Boolean operations (for example, rules like≥ alpha& ≤
beta, matching all strings that are alpha-numerically be-
tweenalpha andbeta.)

As can be seen from the description, only rules generated
from L1 can be evaluated using thePBEFOREmethod. (Recall
that this method can only be used when the antecedent and
consequent both match only a single symbol.)

The system was first tested on two different synthetic
datasets with known rules embedded in the sequence. Then it
was tested on a data set containing ECG measurements, taken
from the UCR Time Series Data Mining Archive [23]. All our
results were generated by running the genetic programming
system with a population size 5000 for a maximum of 20
generations. Crossover, mutation, and reproduction were used
with probabilities 0.9, 0.01, and 0.09, respectively, while the
tournament size was 5.

For each data set, the genetic programming algorithm was
run several times, with different rule languages and interest-
ingness measures. In addition to theJ-measure and the rule
interest functionRI, confidence (c(R)) and confidence times
support (c(R) · F (Ra, Rc, t)) were used as interestingness
measures.



A. Synthetic Data

The synthetic data were constructed by repeatedly drawing
symbols from a subset of the lowercase Latin alphabet (a−y)
with uniform probability. The symbolz, used for representing
the consequent, was inserted into the sequence when some
predefined antecedent pattern was found.

Two different antecedent types were used:

1) The regular expressiono[∧o∧n]∗n.
2) The symbolsa, b, c, d and e occurring in any order

within a window of width 10.

The two sets consisted of 100 kB sequence data with
about 2000 and 160 occurrences of antecedent type 1 and 2,
respectively.

Table I summarizes some typical results produced by the
J-measure andRI function on the synthetic datasets. In
addition, the table presents some typical results from using
the confidence and confidence times support as interesting
measures. The rule notation is explained in the appendix. Note
that the languagesL5

1⇒ L2 and L3
1⇒ L1 were used for

generating the rules from dataset 1 and 2, respectively.
As can be seen from this table, both the confidence and

rule interest measures produce rules having high confidence
but minimal support. Thus neither of these measures are
particularly useful as a fitness function for mining interesting
rules (unless spurious or “rare” rules are desired). Using
confidence times support as a fitness measure rectifies some
of these problems. The system is able to partially recover the
embedded pattern from set 1. It is, however, unable to recover
the pattern from set 2, as its combined support and confidence
(0.0012 · 0.62 = 0.000744) is lower than that of the random
pattern detected (0.041 · 0.041 = 0.001681). Another serious
shortcoming with this fitness measure may be observed in
sets having an uneven symbol distribution. There the rules
generated most often involve the most frequently occurring
antecedent, as this determines the frequency of the rule, and
thus the rule support (data not shown).

B. Modifying theJ-measure

Some of the initial results generated by mining the different
datasets using theJ-measure had a confidence far below50%
(data not shown). This inspired the following modification to
the fitness measure: Multiply theJ-measure with a confidence
correcting functionF (c(R)). Recall that c(R) is the rule
confidence.F (c(R)) should be a monotonically increasing
function that is close to 1 for values ofc(R) larger than some
limit cmin and close to 0 for values belowcmin. One function
that satisfies these requirements is the sigmoid function:

F (c(R)) =
1

1 + e−(c(R)−cmin)·g (10)

Hereg is a parameter regulating how sharp the cutoff atcmin

should be. In the following sections, the valueg = 20 was
used.

Using the modifiedJ-measure as fitness function, the sys-
tem was able to fully recover the rule embedded in set 2. With
this setup, however, the system was unable to fully recover
the rule from set 1. Instead, an approximation was found,

TABLE II

SUMMARY OF RESULTS ON SYNTHETIC DATASET USING THE MODIFIED

J -MEASURE.

Type Language Rule

1 L5
1⇒ L2 o

27←− n
1⇒ z

2 L3
1⇒ L1 {a∧ b∧ c∧ d∧ e : 9} 1⇒ z

using the IQL PBEFORE(t) operator. Table II lists two of
the expressions generated, along with the rule languages used
in the generation process.

C. Real-World Data

The system was tested on the ECG dataset from the UCR
Time Series Data Mining Archive [23]. The series was split
into 10 partially overlapping folds, and each fold was then
further divided into a training set, and smaller validation
and test sets. The validation set was used for early stopping
(model selection). Each training set was then discretized using
the procedure from Section II with a window size of 2 and
alphabet size of 15. The corresponding validation and test set
were then discretized using the limits and symbols from the
training set. The 10 folds were then mined using 4 different
rule languages. Some of the results are presented in Table III.
Note that the results listed in this table are the results produced
by using early stopping, that is, those among the “best of
generation” results having the highest fitness when applied to
the validation set. Also note that the modified support from
Section IV-A with w = 2 was used.

As can be seen from this table, some rules generated by
the system were both highly complex and had an accuracy
close to 1, in both the training and test set. Further analysis
revealed that these rules actually exploited a feature in the
underlying pattern matching hardware: When occurring, both
antecedent and consequent match the same pattern, but the
hardware reports that the antecedent occurs one or two bytes
earlier than what is the actual case.

As a comparison, the other rules generated were fairly
simple. This is probably due to the highly regular pattern in
the sequence. Thus, to circumvent the problem of complex
but invalid rules, and to test the system on a more difficult
problem, the system was run on the ECG data with the
minimum distance parameterw set to 10. Table IV lists two
of the rules generated from theL5

10⇒ L2 language.
Figure 1 shows a plot of a subsequence of the ECG set. The

figure also shows the hits for the antecedent of the second rule
from Table IV in the sequence.

As can be seen, the system has successfully generated a rule
for identifying the highly regular pattern in the ECG signal.

D. Random Data

The rule generation method was also tested on a random
set without any embedded rules. In this set all characters
from thea− z alphabet were drawn with uniform probability.
Thus no patterns should be prevalent in the data. For mining
this set, the four fitness measures from Table I were again
used, in addition to the modifiedJ-measure. The results from



TABLE I

TYPICAL RESULTS PRODUCED BY DIFFERENT INTERESTING MEASURES ON THE SYNTHETIC DATASETS.

Set Fitness measure Rule Supp. Conf. J-mea. RI

1 J-measure g
184←− n

1⇒ z 0.019 0.51 0.072 0.51

1 Rule interest ywvh | wvhy
1⇒ n 10−5 1.0 4.7 · 10−5 1.0

1 Confidence fieg | egif
1⇒ k 10−5 1.0 4.7 · 10−5 1.0

1 Conf. · Supp. n
1⇒ z 0.019 0.51 0.072 0.50

2 J-measure {a∧ b∧ c∧ d∧ e : 9} 1⇒ z 0.0012 0.62 0.0099 0.63

2 Rule interest {z∧ k ∧m∧ s : 4} 1⇒ x 10−5 1.0 4.7 · 10−5 1.0

2 Confidence {s∧m∧ z : 3} 1⇒ k 10−5 1.0 4.6 · 10−5 1.0

2 Conf. · Supp. {h∧ g : 151} 1⇒ r 0.041 0.041 0.00 2.0 · 10−4

TABLE III

EARLY STOPPING RESULTS ONECG DATA SET EVALUATED ON THE TEST SET.

Language Rule Supp. Conf. J-mea. RI

L2
10⇒ L2 b

1⇒ b 0.042 0.68 0.12 0.68

L4
10⇒ L2 n+fhjjcg+jc | n+fhjng+jc | n+fhng+jc | ac | oc | o 1⇒ o 0.074 1.0 0.28 0.99

L3
10⇒ L1 {o∧ c∧ g∧ i ∧ e : 57} 9⇒ o 0.065 0.93 0.18 0.92

L5
10⇒ L2 o

1⇒ o 0.061 0.84 0.19 0.84

L5
10⇒ L2 a

1⇒ a 0.031 0.83 0.12 0.83

TABLE IV

RESULTS FROM THEECG SET WITH w = 10 EVALUATED ON THE TEST SET.

Rule Supp. Conf. J-mea. RI

e
88←− (≥ lkkl) 9⇒m 0.11 0.64 0.10 0.60

(≥ klhjlj )((a 52←− (≥ lf)) | cnf | bnf) | ((a 52←− (≥ lf)) | cnf | bnf)(≥ klhjlj ) 9⇒m 0.12 0.86 0.19 0.83

Fig. 1. Hit locations of antecedent in ECG sequence.

these tests confirm the observations from the runs on the
synthetic data (see Section V-A), concerning the different
fitness measures (data not shown). In addition, the same effect
as observed on the ECG data concerning the hardware feature
exploitation was again observed in this data set (data not
shown).

Several rule languages were tried. This showed that certain
language combinations for the antecedent and consequent may

result in spurious rules that fit the random data (including
the separate test set) well. For example, the languageL5

10⇒
L5 (with w = 10), generated the following rule:!(e(≤
i)yk | kye(≤ i)) 1⇒!((≤ i)(> i)). This rule had support
and confidence of≈ 1.0, and J-measure and Rule Interest
measure of 0.37 and 0.23, respectively, when tested on a
random set different from the training set. The intuition behind
this is that by letting both the antecedent and the consequent
be sufficiently general, it is possible to achieve 100% in
both confidence and support. In general, however, fixing the
consequent (that is, restricting it to be generated from either
L1 or L2), prevents this from occurring.

VI. SUMMARY AND CONCLUSIONS

In this paper we have examined a novel method for unsu-
pervised mining of rules in time series data. Unlike previous
methods, the method places few constraints on the rule repre-
sentation and the quality measure that is being optimized.

The method works by evolving rules through genetic pro-
gramming, and uses specialized hardware to calculate the
fitness (interestingness) of each candidate rule.

For our experiments, we used synthetic data, a discretized
real-world dataset (ECG), and a random data set. We ran
experiments using several different rule languages of differing



complexity, including support for regular expressions. To our
knowledge, no existing methods can accommodate similarly
flexible rule formats. The method was able to recover or
approximate the rules embedded in the synthetic sequence.
In addition, it was able to produce rules recognizing the
periodicity in the ECG sequence.

The method described in this paper is still new, and there
is still much research to be done in examining various rule
formats and interestingness measures. The primary fitness
measure used in our experiments is based on theJ-measure,
which has been found to be robust and useful in ranking rules,
but several other interestingness measures exist, and many of
these may be useful as fitness measures when evolving rules.

APPENDIX

RULE LANGUAGE SYNTAX

This appendix describes the notation used in the rules
presented in Section V.

R∗: The Kleene closure operator. Signifies that theR is
repeated 0 or more times.

R?: The optional operator: TheR is optional and can be
skipped.

{x1 ∧ . . . ∧ xn : w}: Sequential patterns. Signifies that char-
actersx1 to xn will be found in a window consisting
of w characters.

Ri | Rj : This is the alternative operator, meaning that either
sub-expressionRi or Rj should match.

!R: The expression gives a match wheneverR does not
(that is, the negation ofR).

Ri
t←− Rj : Shorthand for thePBEFORE(t) operator. Re-

ports a match wheneverRj reports a match andRi

reported a match at mostt symbols before.
≥ R: Reports a match whenever the current substring is

alpha-numerically (lexically) greater or equal toR
(R must be a string.)

≤ R: Reports a match whenever the current substring is
alpha-numerically (lexically) less than or equal toR
(R must be a string.)

Ri&Rj : The conjunction operator: BothRi and Rj must
match at the same location.
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