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~ Abstract—Rule mining is the practice of discovering interest- (such as [4]) have focused on finding rules that are frequent
ing and unexpected rules from large data sets. Depending on and have high confidence, and only subsequently have sorted

the exact problem formulation, this may be a very complicated s resylting rules using an interestingness measure, which is
problem.. Existing methods typically make strpryg simplifying meant to measure the true quality of the rule
assumptions about the form of the rules, and limit the measure fue q y or )
of rule quality to simple properties, such as confidence. Because 1he approach taken in this paper is based on the method

confidence in itself is not a good indicator of how interesting of [5]: with the aid of specialized pattern matching hardware
a rule is to the user, the mined rules are typically sorted we find sequential rules using genetic programming. In [5]
according to some secondary interestingness measure. In thisyhe task was one of simple sequence learning and prediction.

paper we present a rule mining method that is based on genetic In this paper we show that by using general interestingness
programming. Because we use specialized pattern matching pap y 99 9

hardware to evaluate each ru|e, our method Supports a very measures as fItHESS fUﬂCtIOﬂS, our methOd can be Used to mlne

wide range of rule formats, and can use any reasonable fitness unknown rules of relatively high quality.
measure. We develop a fitness measure that is well-suited for
our method, and give empirical results of applying the method A. Related Work

to synthetic and real-world data sets. . . . .
Previous attempts at solving the problem of mining predic-

Index Terms— Data mining, rule discovery, time series, genetic tjye rules from time series can loosely be partitioned into two
programming, pattermn matching hardware. types. In the first type, supervised methods, the rule target is
known and used as an input to the mining algorithm. Typically,
. INTRODUCTION this can be specific events in (or possibly extrinsic to), the time

EMPORAL sequence data are ubiquitous in many fieldgeries. Thus the goal is to generate rules for predicting these
T ’{ents based on the data available before the event occurred.

and lately there has been an increase in the mter%ﬁe papers [5], [6], [7], [8] fall in this category. All of these

for methods that can extract useful information from larg me form of evolutionary computation: 5 neti
sequence databases [1]. One specific problem is that of rf Some form of evolutionary computation, [5] Uses genetic
gramming, while the others use genetic algorithms.

mining: Extracting interesting and unexpected regularities, BFIn the second type, unsupervised methods, the only input
rules, from the data.

. : _— to the rule mining algorithm is the time series itself. The
The rule mining problem consists of finding patterns tha . . . :
. : 2 oal is to automatically extract informative rules from the
satisfy certain criteria in a sequence database. These pattérns .
series. In most cases this means that the rules should have
(or rules) may have a form such as “if we encounter elemen ) )
. I : ., some level of preciseness, be representative of the data, easy
z, then we will encounter element within ¢ time units.

Here, z is the antecedentand y is the consequent The to interpret, and interesting (that is, novel, surprising, useful,

i and so on), to a human expert [9]. This is the approach we take
quality of such rules may be measured by how frequently they  : o .
. - ! If1 this paper. Of the existing attempts to tackle this problem,
occur (support), their predictive power (confidence), and b . .
: ; . . __many rely on scanning the data and counting the occurrence of
measures of how interesting they are, described numericall
. . every legal antecedent and consequent (for example, [2], [3],
by so-calledinterestingness measures

The general approach taken by several authors (for exam iLO]). The rules are then ranked according to some measure

. . Finterestingness. Thi roach however, pl m
[2], [3]) is to scan the sequential data and to count eve(r? . te. estingness S approac does, however, place some
itations on the rule format in order to make the task of
occurrence of a legal rule, as well as the occurrences Of . .
. . counting all occurrences feasible. Others have focused on

every legal antecedent and consequent. This counting makesS it ... - i

. . . specific mining problems, such as detecting unusual move-
possible to calculate the frequencies and confidences of ea o .
rule ments [11], or finding unusual temporal patterns in market

basket data [12].

E Howevgr, t:nls approlach I:m|fts th? forlrlnat |Sf ttr:}etrullfs. Unlike these approaches, we try to tackle the core problem
ven moderately compiex rule formats will maxe the tas irectly, that is, mining interesting rules. This is done by defin-
counting all occurrences unfeasible. Also, existing metho

g some formal interestingness measure and using genetic
Pal Seetrom is employed at Interagon AS, Medisinsk-teknisk senter, olRyogramming to_ search the rule space'for the 'mOSt Interesting
Kyrres gt. 3, NO-7489 Trondheim, Norway (email: paalsat@interagon.coiyles. Thus, unlike other methods, the interestingness measure

fax: +47 45594458). _is used directly in the mining process and not as a post-
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B. Structure of This Paper experiments, we use several such languages, each representing

The rest of this paper is structured as follows: Section @ format for the rules we wish to discover. Expressions in the
describes the preprocessing scheme used to discretize the fhfSen rule languages may be evaluated by the specialized
series data used in the experiments, Section |1l describes Hejtern matching hardware described in Section IV-B, and rule

genetic programming is used to evolve temporal rules, Sdgness is calculated by searching the time series data for rule

tion IV describes in detail how rules are evaluated, Section §CUrrences.
describes our experiments and empirical results, and finally
Section VI summarizes and concludes the paper. A. Rule Languages

The basic rule format that will be used throughout this paper

o o is the simple and well known: “lantecedenthenconsequent
The rule mining strategy presented in this paper works Qfithin 7' time units”. In its simplest form, as used in [4],

discrete sequences of symbols. To transform the time Sefjggh the antecedent and consequent are single symbols in the

data of our empirical application to such a symbolic sequencgiscretized alphabetd, while T'is a constant. This results in
we use a simple method used, among other places, in [1]a|}ule language of the form: z yforz,ye A

extracts all windows O.f widthw, and for_ each such window Several extensions to this simple language are possible and
a real-valued feature is calculated. This feature may be, fﬁ

X . i Jve been investigated by others:
example, the average value or signal to noise ratio. In our )
experiments we have used the slope of a line fitted to the datal) Seduential pattemng3]: If z; andz, and... and z,
points of the window with linear regression. occur in a window of widthw, theny occurs withinT'

After such a feature sequence has been constructed, a copy, time units. Herer;,i € {1,n} andy are symbols inA.
is made, which is sorted and divided into(approximately) ) Regular expressions/episode rulgj: If the sequence
equal-sized intervals. Each interval is assigned an integer from ~ £1:%2:---, @, can be found within in a window of
1 to a, and the limits of the intervals are used to classify ~ Width w, theny occurs withinT" time units. Here,
the values in the original feature-sequence. By following this ~ %i»¢ € 1...n can either be a symbol inl, or a set
procedure, we are guaranteed that the symbols (that is, the ©f SymbolsX C A for which anyz € X can be a legal
integers, which easily map to characters in some alphabet) all match;y is a symbpl inA. These rules are a simple folrm
have approximately the same frequency. of _regular express,lonst; for example, the antecedent in the

Our experiments require us to use both training sets, vali-  €pisode rule z{c,d} =y can be written as .a(c[d),
dation sets (for early stopping, or model selection), and test ~With the added requirement that the maximum length of
sets. Since the discretization process uses information about the string matched is.
“the future” when classifying a single point, it cannot be used Note that all of these rule languages share the same basic
directly on the validation and testing sets. Instead, the nornfatmat. What differs is how the antecedent is defined, that is,
procedure was used on the training set, and the limits foutite language used to generate the antecedent. In general, all
there were used when classifying the features of the validatinsies of this type can be described by the three parameters:
and testing sets. the antecedent languagk,, the consequent languagde,, and

Note that by allowing the windows to overlap when classihe maximum temporal distancg,
fying the positions we avoid unneeded data reduction, but weMost previously investigated rule languages make a distinc-
also introduce spurious correlations between adjacent symbtilsn betweenL, and L.: L, varies in complexity, whileL,.
For most time series, two windows that overlapdn— 1 usually is a single character fror? In the following no such
positions will be quite likely to have similar feature valuedjmitation will be made: unless otherwise notéd = L..
which means they are more likely to be assigned the same
symbol. How we deal with this problem is described i
Section IV-A.

This discretization method is by no means unique. In [13] The mining algorithm works by using genetic programming
a method is described, which uses the slope and signalt@csearch the space of possible rules defined pyL. andT.
noise ratio for segments of the series. Other usable methddigre specifically, each individual in the population is a syntax
of discretization include those used to simplify time series faree in the languagé, L L,. This is implemented by using
indexing purposes. See [14] for a survey. three separate branches; One branch for each,of.., and

T.
I1l. EVOLVING RULES In the antecedent and consequent branches, the internal

The evolutionary computation strategy used in this pap@pdes in t_he parse trge are the syntactical podes necessary for
is genetic programming, as described in [15]. The a|gorith|:ﬁpresentmg expressions in the corrgspondlng Ianguag_es. If for
uses subtree swapping crossover, tree generating mutaf§ATP!e, the considered language is regular expressions, the
and reproduction as genetic operators. Individuals are choS¥Rtactical nodes needed amion, concatenatiorandKleene

for participation in new generations using tournament selec- o _ _
One notable exception is [16], which defines a rule language where both

tion. Each individual in .the-populanon IS & program treeﬂa and L. are sequences of characters separated by wildcards, that is, episode
representing an expression in some formal language. In @ulés without parallel episodes.

Il. PREPROCESSING

B. Rule Representation



closure The leaf nodes in these branches are the symbols fromAn alternative to theJ-measure is the Piatetsky-Shapiro

the antecedent and consequent alphal¥etsand >-.). rule-interest measureRl, described in [19]. This measure
The maximum distance branch defines the maximum diguantifies the degree of correlation between the antecedent

tance ¢t of the rule. This branch is constructed by usin@nd consequent. Rules with high correlation are then seen as

arithmetic functions (typically+ and —) as internal nodes, more interesting. In the context of sequence rules, the rule

and random integer constants as leaf nodes. The final distamterest function can be defined?as

t is found by computing the result of the arithmetic expression

t _ t t
rr, and using the residue of modulo T + 1. RI(Re, Ra) = p(Rc|Ra) — p(Ra) - p(R.), (5)
with the same definitions for the probabilities as for the
C. Confidence, Support, and Interestingness J-measure. As can be seen from (5), Af. and R, are

. ¢ . r statistically independent theRl = 0. If H(R,, S,?) is more
Given a ruleR = R, = R. in the rule languagd., ~  (less) frequently true in a window of lengthvhenH (R,, S, i)

Lc (such thatt < T) and a discretized sequenceé = g 46 and; is the position immediately to the left of the
(a1, a2, ...,a,), the frequency'(R,,) of the antecedent is thewindow, thenRI > 0 (RI < 0).

number of occurrences dt, in S. This can be formalized as
F(R,) = {i| H(Rq,S,9)}|, (1) IV. RULE EVALUATION

whereH (R, S, 4) is a hit predicate, which is true &, occurs Consider the problem of mining interesting rules from a

at positioni in S and false otherwise. The relative frequency?®dUence, given a rule languagé, defined by(L, Le,T),
F(Ra), is simply F(R,)/n, wheren is the length ofS. and an interestingness functigh In order to use genetic
Tﬁe1supportof a rule is defined as: programming to perform this rule mining, we must be able

to compute the value of for every possible rule in_. In
F(Ra,Re,t) = |{i | H(Ra, S, i)A the case thaif is one of eitherJ or RI from Section llI-
N . C, this amounts to estimating the probabilitigs?,), p(R?)
) <97 < c
H(Fe, S,) Nkl < j < it (2) and p(RL|R,). In the interest of simplicity, we will use the
This is the number of matches &, that are followed by at maximum likelihood estimates for these probabilities. That is,

least one match oR. within ¢ time units. for a given ruleR = R, L R., the estimators are:
The confidenceof a rule is defined as: N
F(R R t) p(Ra) = f(Ra) (6)
B) = =5y © PR;) = f(RY) 7)
¢ P(Ri|R,) = c(R) (8)

In most existing methods, candidate rules with high con-
fidence and support are selected. This approach usually géAls amounts to counting the following:
erates a lot of rules, many of which may not be particularly « The number of occurrences &, in S (from the defini-
interesting. As an aid in investigating these rulieseresting- tion of f(R,).)
ness measureBave been developed (see [17] for a survey). « The number of windows of length where H(R,, S, 7)
These measures may, for instance, be used to sort the rules in is false at every position (@g R!) = 1 —p(—R!), where
descending order of interest. p(—R!) is the probability thatd (R, S, ) is false for all
One measure of interestingness that has proved to be robust positions in a random window of lengthin S.)
for identifying surprising rules is thg-measure ([18]). This « The number of hits fronR, where H(R,., S, ) is true at

is defined as: least once within time.
p(RL|R.)
J(Rg, Ra) = p(Ra) - (P(Rf:\Ra)logz W+ A. Handling Correlations Caused by the Discretization
¢ Method

1- p(RHRa) 4 . . . . . . .
W) (4) The discretization process described in Section Il introduces
] N ) ) correlations between consecutive symbols in the discretized
Here, p(R,) is the probability of (R, S,) being true sequence. This results in that rules with low distancesl|

at a random locatiori in S. p(R) is the probability of haye high confidence. Since these rules are artifacts of the
H(R.,S,i) being true for at least one indexin a randomly giscretization process, we do not consider them interesting.
chosen window of width. Finally, p(R(|R.) is the probability 14 account for these induced correlations, the number of
of H(R.,S,i) being true at for at least one indexin a occurrences of the rul& = R, Y R. in a sequences,

randomly chosen window of width, given thatH (R.,S,7)  giscretized with a window length af, is defined as ([4]):
is true and thatj is the position immediately before the

chosen window. The/-measure combines a bias toward more F(R,, R..t) = |{i | H(R,, S,i)A
frequently occurring rules (the first termp(R,)), with the 1% N < i< i1 9
degree of surprise in going from a prior probabilityR’.) to a (Re, $,5) Nidw < j < ifwt=1}] - (9)

- . +
posterior probabilityp(R.|R,) (the second term, also KNOWn  2yqe that this is an adaptation of the definition in [19], where the function
as the cross-entropy). is defined for simple classification rules whe®g and R.. are single symbols.

(1 —p(RL|R,))log,



Thus, only occurrences d?, that are followed by a hit from from the antecedent and consequernt is S, it has increased

R, afterw — 1 units of time are counted. to 2 in S”. Although in this case it is trivial to account for the
distance distortion, this is not so in the general case (consider,
B. Counting Hits for instance,R, = (albc)).

These problems can be solved by using another method
r evaluating (R, R., t): Store the hit locations fronR,
d R, in two arrays sorted by the hit position (this is trivial

One important feature of our method is the relative Ia%
of restrictions placed on the allowed rule languages. To allg

for Su.Ch flexibility, we ‘F.a.””"t perform any general occurrencg o using the PMC, as hits are reported sequentially in an
counting—the probabilities of each rule must be est|mat% ray). Iterate through the antecedent array and increment a

Ind(:“r?deu?'lrlrz’atlgr:r}(ea cqt:arsea (;]:Jr?]alrelf{ft'gg trtﬁg f't?]efhsé Ezigcounter whenever a hit in this array has a hit in the consequent

su stimat quires P pass ug array that is within the desired distance. This can be done in
To speed up these calcullat|ons. to the Ievgl where th@/na + n,) time, wheren, and n, is the number of hits

are usable as components in a fitness function, we US§ s the antecedent and consequent, respectively (or, in other

specialized search chip ([20], [21]) for hit counting. Thi : . . .
pattern matching chip (PMC), is able to search 100 MB/s a%vﬁprds, InO(n) time, wheren is the number of symbols if

. . at is, the worst case whdR, matches every position if.
can handle from 1 to (.54 parallel queries, dependmg ON qUeMY\ote that both methods can be used ¥orr) evaluatin)g the

$Hodified frequency function from Section IV-A. The only

query language ([22]). This language supports such langu ed requirement when evaluating this function is that there

features as regular expressions, latency (distance), BOOIWst be leasty — 1 symbols between hits fronk, and R

combinations, and alpha-numerical comparisons. éhe PBEFOREmethod solves this by adding—1 wild-cards

As described in Section 1V, the process of evaluating a ru 8at is symbols matching any symbol) at the startRdf or
consists of counting the occurrences of three different patter Pthe énd ofR". For the hit processing method, this amounts
The PMC can be used for this purpose in the following way, < '

Th b ‘ & in S Thi s t o only considering hits from the consequent that have at least
€ humber of occurrences @, in 5. This amounts 10 5 gistance ofw — 1 symbols from a hit from the antecedent.
counting all hits ofR, in S.

The number of windows of lengthwhere H(R,, S, i) is V. EXPERIMENTAL RESULTS
false at every positianThis can be found by looping through
the hits H. = {hy,...,hn} = {i | H(R., S,9)} of R, in S
and incrementing a counter By — h; 1 — ¢t if h; —h;_1 >t
(ho = 0)

The number of hits fronR, where H(R,, S, 1) is true at
least once within time: This proved difficult to calculate as 3
this expression cannot be directly evaluated by the PMC. Thé'
PMC is, however, capable of finding all occurrences where
H(R.,S,1) is true and is preceded by a hit froR), at a max-
imum distance oft. This process can be summarized by theLr
pattern beforeoperator, with the syntak, PBEFORE¢) R... 7

As long as the length of the substring matchediyy and
R.is1,F(R,, R.,t) can be evaluated by using tRBEFORE
operator in the following way: Construct froifi the reverse
sequenceS”. F(R,, R.,t) is given by counting the number
of hits from the expressio?, PBEFOREt) R, in S”. If,
however, this is not the case (that is, eitligr or R, does not
match a single symbol), this procedure cannot be used. Thgf‘)(%f
are several reasons why it fails, but the most important reasgg{
is that the distances are distorted.

Consider, for instance, the rule whefg, = ab, R. = ¢

In our experiments we used the following five rule lan-
guages:
Ly Single symbols.
L, Single symbols and concatenations of single symbols.
Sequential patterns.
Regular expressions with the limitation that skips and
repetitions cannot be recursive (for example, expressions
of the type:a(b*c)*d, a(b?c)?d and a(b?c)*d are not
allowed.)
L4 with the addition of alpha-numerical comparisons and
Boolean operations (for example, rules likealpha& <
beta, matching all strings that are alpha-numerically be-
tweenalpha andbeta)
As can be seen from the description, only rules generated
from L can be evaluated using tR8EFOREmMethod. (Recall
that this method can only be used when the antecedent and
sequent both match only a single symbol.)
he system was first tested on two different synthetic
asets with known rules embedded in the sequence. Then it
was tested on a data set containing ECG measurements, taken
andt — 1, and the sequencé — (a b,c). In order for R from the UCR Time Series Data Mining Archivg [23]. All our
to match ’the same sub—sequencesS‘Tr;as in S, it must k;e results were generateq by running the genetic programming
reversed. It should be evident that in this cas,e the reverse%?tem .W'th a population slz€ 5000 for a maximum of 20
R, is R" — ba. Searching foR” in the reverse sequence ggneraﬂons: '(?rossover, mutation, and reprodgctlon were used
- a . . L@ . . - with probabilities 0.9, 0.01, and 0.09, respectively, while the
ST = {c, b, a}, will result in a hit at positiors, while R, will tournament size was 5
report a hit at positiori. So while the distance between hits For each data set, tHe genetic programming algorithm was
3Note that this differs from the definition in [4], where the lower range wakUn several times, with different rule languages and interest-
defined asi + w + 1. However, in the limiting case, where = 1 (thatis, ingness measures. In addition to tllemeasure and the rule
ge?ii;]igt]ilgntiir:?zgoint), this formula should be equal to the original frequengyiarest functionRlI, confidence ¢(R)) and confidence times
4The prototype used in these experiments searches 33 MB/s and handIS{PPOIt ¢(R) - F(Rq, R.,t)) were used as interestingness
to 4 parallel queries. measures.



TABLE I

A. Synthetic Data
SUMMARY OF RESULTS ON SYNTHETIC DATASET USING THE MODIFIED

The synthetic data were constructed by repeatedly drawing J-MEASURE.
symbols from a subset of the lowercase Latin alphadbety) Type | Language Rule
with uniform probability. The symbot, used for representing 1| L. & L, 02l nl,
the consequent, was inserted into the sequence when some 2 | Ls2 L, | {arbacadAe: 9} Sz

predefined antecedent pattern was found.
Two different antecedent types were used:

i A AN, T*
1) The regular expressias(”o”n]"n. using the IQLPBEFORE¢) operator. Table Il lists two of

2) The symbolsa, b, ¢, d and e occurring in any order ; .
within a window of width 10. Fhe expressions generated, along with the rule languages used
in the generation process.

The two sets consisted of 100 kB sequence data with

about 2000 and 160 occurrences of antecedent type 1 and.2,
respectively. % Real-World Data

Table | summarizes some typical results produced by theThe system was tested on the ECG dataset from the UCR

J-measure ancRl function on the synthetic datasets. Infime Series Data Mining Archive [23]. The series was split
addition, the table presents some typical results from usiiffo 10 partially overlapping folds, and each fold was then
the confidence and confidence times support as interestfgher divided into a training set, and smaller validation
measures. The rule notation is explained in the appendix. Néfed test sets. The validation set was used for early stopping
that the languageg s A Lo and L A L, were used for (model selection). Each training set was then discretized using
generating the rules from dataset 1 and 2, respectively. ~ the procedure from Section Il with a window size of 2 and
As can be seen from this table. both the confidence afphabet size of 15. The corresponding validation and test set
rule interest measures produce rules having high confidef¢g'e then discretized using the limits and symbols from the

but minimal support. Thus neither of these measures df@ining set. The 10 folds were then mined using 4 different
e languages. Some of the results are presented in Table IlI.

particularly useful as a fitness function for mining interestin ! - 1= 1e
rules (unless spurious or ‘“rare” rules are desired). Usi te that the results listed in this table are the results produced

confidence times support as a fitness measure rectifies séeuSing €arly stopping, that is, those among the *best of
of these problems. The system is able to partially recover tHgneration” results having the highest fitness when applied to
embedded pattern from set 1. It is, however, unable to recofgf validation set. Also note that the modified support from

the pattern from set 2, as its combined support and confiderg@etion IV-A withw = 2 was used.
(0.0012 - 0.62 = 0.000744) is lower than that of the random AS can be seen from this table, some rules generated by

pattern detected)(041 - 0.041 = 0.001681). Another serious the system ‘were both high!y complex and had an accuracy
shortcoming with this fitness measure may be observed GlpSe t0 1, in both the training and test set. Further analysis
sets having an uneven symbol distribution. There the rulivealed that these rules actually exploited a feature in the
generated most often involve the most frequently occurritf'derlying pattern matching hardware: When occurring, both

antecedent, as this determines the frequency of the rule, &hjecedent and consequent match the same pattern, but the
thus the rule support (data not shown). hardware reports that the antecedent occurs one or two bytes

earlier than what is the actual case.
. As a comparison, the other rules generated were fairly

B. Modifying the/-measure simple. This is probably due to the highly regular pattern in

Some of the initial results generated by mining the differefiie sequence. Thus, to circumvent the problem of complex
datasets using thé-measure had a confidence far beld9% but invalid rules, and to test the system on a more difficult
(data not shown). This inspired the following modification t@roblem, the system was run on the ECG data with the
the fitness measure: Multiply th&-measure with a confidenceminimum distance parameter set to 10. Table IV lists two
correcting functionF'(c(R)). Recall thatc(R) is the rule of the rules generated from thie; Y, language.
confidence.F(c¢(R)) should be a monotonically increasing Figure 1 shows a plot of a subsequence of the ECG set. The
function that is close to 1 for values of?) larger than some figure also shows the hits for the antecedent of the second rule
limit ¢,,,:, and close to 0 for values below,;,. One function from Table IV in the sequence.
that satisfies these requirements is the sigmoid function: As can be seen, the system has successfully generated a rule

1 for identifying the highly regular pattern in the ECG signal.

F(e(R)) (10)

- 1 + e_(C(R)_Cmin)'g

Hereg is a parameter regulating how sharp the cutoff,at, D- Random Data

should be. In the following sections, the valye= 20 was The rule generation method was also tested on a random

used. set without any embedded rules. In this set all characters
Using the modified/-measure as fitness function, the sysrom thea — z alphabet were drawn with uniform probability.

tem was able to fully recover the rule embedded in set 2. Wiithus no patterns should be prevalent in the data. For mining

this setup, however, the system was unable to fully recouvtis set, the four fithess measures from Table | were again

the rule from set 1. Instead, an approximation was foundsed, in addition to the modified-measure. The results from



TABLE |
TYPICAL RESULTS PRODUCED BY DIFFERENT INTERESTING MEASURES ON THE SYNTHETIC DATASETS

Set | Fitness measure Rule Supp. | Conf. | J-mea. RI

1 J-measure g ndz| 0019 | 051 | 0072 0.51

1 Rule interest ywvh | wvhy = n | 105 1.0 | 47-10-5 1.0

1 Confidence fieg | egif=k | 1075 1.0 | 47-10-5 1.0

1 | Conf.- Supp. n=2z| 0019 | 051 | 0.072 0.50

2 J-measure | {aAbAcAdAe: 9} = 7| 0.0012| 0.62 0.0099 0.63

2 Rule interest {ZAKAMAS: 4} x| 107° 1.0 | 4.7-10-5 1.0

2 Confidence {sAmAz:3} k| 107° 1.0 | 4.6-10-5 1.0

2 Conf. - Supp. {hAag: 151} =r | 0.041 | 0.041 0.00 2.0-10—4

TABLE III
EARLY STOPPING RESULTS ONECG DATA SET EVALUATED ON THE TEST SET
Language Rule Supp.| Conf. | J-mea.| RI
Ly 2 L, b=b|0042| 068 | 012 |0.68
Ly 2 L, | ntfhijicg™jc | ntfhing™jc | ntfhng*jc | ac| oc| 0= 0 | 0.074 | 1.0 0.28 | 0.99
Ls 21, {oAcAgAiAe:57} 20| 0.065| 0.93 | 0.18 | 0.92
Ls 21, o=0|0061| 084 | 019 | 0.84
Ly 2 L, a=a | 0031| 0.83| 0.12 |0.83
TABLE IV
RESULTS FROM THEECGSET WITHw = 10 EVALUATED ON THE TEST SET
Rule Supp.| Conf. | J-mea.| RI
e (>Ikkl)=m| 011 | 0.64 | 0.10 | 0.60
(> KIhjlj)((a <22 (> If)) | cnf | bnf) | ((a<2= (> If)) | cnf | bnf)(> Kkihjlj)) = m | 0.12 | 0.86 | 0.19 | 0.83

-~ result in spurious rules that fit the random data (including
the separate test set) well. For example, the Iangda@ég

Ls (with w = 10), generated the following rulet(e(<

L i)yk | kye(< i) =!(< i)(> ). This rule had support
and confidence ofz 1.0, and J-measure and Rule Interest
measure of 0.37 and 0.23, respectively, when tested on a
random set different from the training set. The intuition behind
this is that by letting both the antecedent and the consequent
be sufficiently general, it is possible to achieve 100% in
both confidence and support. In general, however, fixing the
consequent (that is, restricting it to be generated from either
ECG . Antecedent Hits L,y or L), prevents this from occurring.

Fig. 1. Hit locations of antecedent in ECG sequence. VI. SUMMARY AND CONCLUSIONS

In this paper we have examined a novel method for unsu-
pervised mining of rules in time series data. Unlike previous
these tests confirm the observations from the runs on thethods, the method places few constraints on the rule repre-
synthetic data (see Section V-A), concerning the differesentation and the quality measure that is being optimized.
fitness measures (data not shown). In addition, the same effecthe method works by evolving rules through genetic pro-
as observed on the ECG data concerning the hardware feaggmming, and uses specialized hardware to calculate the
exploitation was again observed in this data set (data rfghess (interestingness) of each candidate rule.
shown). For our experiments, we used synthetic data, a discretized
Several rule languages were tried. This showed that certa@gal-world dataset (ECG), and a random data set. We ran
language combinations for the antecedent and consequent mgyeriments using several different rule languages of differing



complexity, including support for regular expressions. To ouf7] S. Zemke, “Nonlinear Index Prediction,” iRroceedings of the Inter-

knowledge, no existing methods can accommodate similarly national Workshop on Econophysics and Statistical FinafRagermo,
flexibl le f Th hod bl Italy, September 1998, Physica A Vol. 269, no. 1, Elsevier Science,
exible rule formats. The method was able to recover or g\ wmantegna, Ed., pp. 177-183.

approximate the rules embedded in the synthetic sequengd. R. J. Povinelli, “Using Genetic Algorithms to Find Temporal Patterns

In addition, it was able to produce rules recognizing the Indicative of Time Series Events,” iGECCO 2000 Workshop: Data
L Mining with Evolutionary Algorithmspp. 80-84, 2000.

perlod|C|ty in the ECG sequence. [9] A. A Freitas, Data Mining and Knowledge Discovery with Evolutionary

The method described in this paper is still new, and there Algorithms Berlin: Spinger-Verlag, 2002.

is still much research to be done in examinina various ruiéD] F. Hoppner and F. Klawonn, “Finding Informative Rules in Interval
9 Sequences,” irLecture Notes in Computer Scienc®189, 125-??,

formats and interestingness measures. The primary fitness 5gg1.
measure used in our experiments is based onJtheeasure, [11] R. D. Martin and V. Yohai, “Data Mining for Unusual Movements in
which has been found to be robust and useful in ranking rules Temporal Data,” inkDD Workshop on Temporal Data Mining001.
b | other int fi ist d %f S.‘Chakrabartl, S. Sa_ra\{vagl and B. D_om, Mining surprising patterns
ut several other Interes INngness measures exist, and man using temporal description length,” iffwenty-Fourth International
these may be useful as fithess measures when evolving rules. Conference on Very Large databases VLDB'B&w York, NY: Morgan
Kaufmann, A. Gupta, O. Shmueli, and J. Widom, Eds., pp. 606-617,

1998.
APPENDIX [13] M. Last, Y. Klein, and A. Kandel, “Knowledge Discovery in Time Series
Databases,1EEE Trans. on Systems, Man, and Cybernetiot 31B,
RULE LANGUAGE SYNTAX no. 1, pp. 160169, Feb. 2001.
; . . . - 4] M. L. Hetland, “A Survey of Recent Methods for Efficient Retrieval of
This apPe”d'X _descrlbes the notation used in the rU|ES Similar Time Sequences,” iData Mining in Time Series Databases
presented in Section V. M. Last, A. Kandel, and H. Bunke, Eds. Singapore: World Scientific,
. T . to be published.
R The Kleene closure Qperator. Signifies that fhés [15] J. R. Koza,Genetic Programming: On the programming of Computers
repeated O or more times. by Means of Natural Selectiot€ambridge, MA: The MIT Press, 1992.
R?: The optional operator: Th& is optional and can be [16] M. Spiliopoulou, “Managing Interesting Rules in Sequence Mining,” in
skipped Proc. PKDD, 1999, pp. 554-560.
pped. [17] R. J. Hilderman and H. J. Hamilton, “Knowledge discovery and

{z1 A ... ANz s w}: Sequential patterns. Signifies that char- ~ interestingness measures: A survey,” Department of Computer Science,
actersr; to x,, will be found in a window consisting University of Regina, Saskatchewan, Canada, Tech. Rep. CS 99-04,

Oct. 1999.
of w characters. ] P. Smyth and R. M. Goodman, “Rule induction using information

o . . ., [18
R; | R;: This is the alternative operator, meaning that either ~ theory,” in Knowledge Discovery in Database§. Piatetsky-Shapiro,
sub-expressiom?; or R; should match. W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 159-176.

1 - : : [19] G. Piatetsky-Shapiro, “Discovery, analysis and presentation of strong
LR The e_xpreSS|on gI_VeS a match wheneyedoes not rules,” in Knowledge Discovery in Database&. Piatetsky-Shapiro,
(that is, the negation aoR). W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 229-248.

. - Shorthand for thePBEF E rator. Re- [20] Fast Search & Transfer ASA, “Digital processing device,” European
R; — R, Shorthand for theP OR (t) operato € patent specification EP1125216B1, deriving from international published

ports a match whenevek; reports a match an®; patent application WO 00/22545.
reported a match at mostsymbols before. [21] Fast Search & Transfer ASA, “Sgkeprosessor,” Norwegian patent

> R: Reports a match whenever the current substring is 309169, also filed as international published patent application WO
= 00/29981 titled “A processing circuit and a search circuit.”

alpha—numerically (lexically) greater or equal o [22] Interagon AS. (2002, Aug.). The IQL Language. In-

(R must be a string.) teragon AS. Trondheim, Norway. [Online]. Available:
< R: R r match whenever th rren rina i http://www.interagon.com/pub/whitepapers/IQL.reference-latest.pdf
<k eports a _atc e ever the current subst 9 [253] E. Keogh and T. Folias, “The UCR Time Series Data Mining Archive,”

a|pha'numer|ca”3_/ (Iexically) less than or equalito [Online] Available from http:/Avww.cs.ucr.edu/~eamonn/

must be a string. TSDMA/index.html , Riverside CA. University of California, Com-

R tb tring SDMA/index.html iverside C iversity of California, C

R;&R;: The conjunction operator: Bott®; and R; must puter Science & Engineering Department, 2002.

match at the same location.
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